
Decision Support Databases Essentials
Antonio Albano, Salvatore Ruggieri

University of Pisa
Department of Computer Science

tonio.albano@gmail.com salvatore.ruggieri@unipi.it

Copyright c© 2015 by A. Albano, S. Ruggieri

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that the
first page of each copy bears this notice and the full citation including
title and authors. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission from the copyright
owner.

Februray 13, 2015
Revision, December 20, 2023

CONTENTS

Preface v

I Decision Support Systems and Multidimensional Modeling 1

1 Decision Support Systems 3
1.1 Information Systems . 3
1.2 Types of Information Systems . 4
1.3 Data Warehouse: A Decision Support Database . 6
1.4 Data Warehousing Architecture . 9
1.5 What to Model . 10
1.6 Concluding Remarks . 14
1.7 Summary . 14

2 Data Warehouse Modeling 17
2.1 Conceptual Multidimensional Model . 17
2.2 Multidimensional Relational Model . 26
2.3 Multidimensional Cube Model . 28
2.4 Summary . 33

3 Data Warehouse Design 35
3.1 Introduction . 35
3.2 Data Warehouse Design Approaches . 36
3.3 A Case Study . 52
3.4 Project Quality Control . 61
3.5 Summary . 63

4 A DW to Support Analytical CRM Analysis 65
4.1 Introduction . 65
4.2 Operational and Analytical CRM . 66
4.3 Sales and Marketing Analysis . 70
4.4 Profitability Analysis . 73
4.5 Service Quality Analysis . 76
4.6 Customer Analysis . 79
4.7 Data Warehouse Logical Design . 81
4.8 Summary . 84

CONTENTS ii

II Multidimensional Analysis 85

5 Data Analysis 87
5.1 OLAP Systems Solutions . 87
5.2 Data Analysis Using SQL . 89
5.3 Simple Reports with SQL . 90
5.4 Moderately Difficult Reports with SQL . 96
5.5 Very Difficult Reports Without Analytic SQL . 102
5.6 Summary . 117

III Data Warehouse Systems: Storage, Indexing and Query Evaluation 119

6 Storage Structures and Star Query Plans 121
6.1 Indexes Overview . 121
6.2 Special-Purpose Indexes . 123
6.3 Physical Operators . 127
6.4 Star Query Plans . 128
6.5 Column-Oriented Data Warehouse Systems . 133
6.6 New DW Platforms . 136
6.7 Commercial Systems for Data Warehouses . 136
6.8 Summary . 138

7 Materialized Views Selection 139
7.1 Introduction . 139
7.2 The Lattice of Views . 140
7.3 View Sizes Estimation . 142
7.4 A Greedy Algorithm for the Selection of Materialized Views 142
7.5 Other Algorithms for the Choice of the Views to Materialize 145
7.6 The Selection of Indexes on Materialized Views . 150
7.7 Summary . 151

8 Optimization of Star Queries with Grouping 153
8.1 Introduction . 153
8.2 Properties of Functional Dependencies and of the Group-by Operator 153
8.3 First Case: Invariant Grouping . 158
8.4 Second Case: Double Grouping . 160
8.5 Third Case: Grouping and Counting . 162
8.6 Summary . 164

9 Query Rewriting Using Materialized Views 165
9.1 Introduction . 165
9.2 Approach with a Compensation on the View . 168
9.3 Approach with a Transformation of the Query . 182
9.4 Summary . 184

A Case Studies 185
A.1 Hospital . 185
A.2 Airline Companies . 187
A.3 Airline Flights . 188
A.4 Inventory . 189
A.5 Hotels . 192
A.6 Mortgage Applications . 194

CONTENTS iii

B Case Studies: Solutions 197
B.1 Hospital . 197
B.2 Airline Companies . 201
B.3 Airline Flights . 203
B.4 Inventory . 208
B.5 Hotels . 211
B.6 Mortgage Applications . 214

C Glossary 221

Bibliography 225

Subject Index 229

CONTENTS iv

PREFACE

In our information-based society one of the most important applications for computers is information
storage and management with a DBMS to support organizations both in performing the business and in
bringing the business to the Web to allow new routes to market.

It is also well known that information overload is a huge challenge for businesses, but it is also an
enormous opportunity in making smarter decisions based mainly on data analysis to improve produc-
tivity. Consequently, starting from the 1990s another important application of information storage and
management to support organizations is analyzing the business with data-driven Decision Support Sys-
tems designed for summarizing large amounts of data into a form that is useful and easily interpretable
to help managers to analyze the performance of key business processes, worthy of improvement.

Decision support applications involve quite complex analysis which cannot be efficiently executed
against operational databases, optimized for online transaction processing. For this reason, organizations
maintain a separate database, called a data warehouse, which is specifically organized for such complex
analysis. The term data warehouse is a metaphor: a warehouse is a large structure where things are
stored and organized for easy accessibility. However, a data warehouse is not only a large repository
for historical data extracted from operational systems, but is organized to create the right models for
measurable key business processes, to support informed decisions about how to improve them.

Organization

The text is organized in three major parts, plus an appendix with case studies.

– Part I: Decision Support Systems and Multidimensional Modeling (Chapters 1 through 4). Chap-
ter 1 provides a general overview of the purpose of decision support systems, and of the concepts of
data warehouse and of data warehousing process. We also introduce the reason why data warehouses
are used to analyze key business processes that are measurable and worthy of improvements, and con-
sequently what is modeled in a data warehouse. Chapter 2 presents the fundamental concepts about
a conceptual model for designing data warehouses, and the logical data model to implement them.
Chapter 3 presents a data warehouse design process and a methodology for the implementation of
a logical design schema. Chapter 4 gradually presents the design of a data warehouse to support
Customer Relationship Management (CRM).

– Part II: Multidimensional Analysis (Chapters 5). The chapter introduces the business intelligence
tools for data analysis, and then focuses on the extensions of SQL for online analytic processing,
called Analytic SQL, the fundamental user-oriented relational languages to analyze data for producing
interesting reports to evaluate the performance of the modeled key processes in order to improve them.

– Part III: Data Warehouse Systems: Storage, Indexing and Query Evaluation (Chapters 6 through
9). These chapters present the relational DBMS technological extensions needed to support the ana-
lytic queries on data warehouses, because traditional DBMSs do not work well on data warehouses
with huge volumes of data. Consequently, it is important not only to design a good data warehouse
logical schema, but also to know how to use a specialized DBMS in the right way to develop a better
performing business intelligence application. Chapter 6 presents index types, different from the clas-
sical inverted indexes that should be available in a DBMS to optimize analytic star query plans. Then
new data warehouse platforms are presented, such as Column-based, In-memory and Data Warehouse
Appliances, which provide cost-effective scalability and simplify big data warehouse implementa-
tions. Chapter 7 presents the importance of materialized views, i.e., pre-computed view query results

vi

persistently stored, which, in addition to indexes, can significantly speed up complex analytic query
processing. Examples of algorithms are presented to solve the problem of selecting an appropriate set
of views to materialize. Chapter 8 deals with analytic query optimization to exploit the technique of
commuting group-by and join operators. Chapter 9 deals with the query rewriting problem to exploit
the use of materialized views. The existence of a materialized view is transparent to SQL queries, so a
DBA can create or drop materialized views at any time without affecting the validity of SQL queries,
as happens with indexes. A materialized view is useful if it is used by the DBMS to rewrite complex
analytic queries to improve their performance, so it is important to know how a DBMS can rewrite
an analytic query using materialized views in order to define those more useful.

– Appendix. A set of case studies is presented to apply the concepts presented in the chapters of the
book.

Moreover, it has been decided to make this edition available for free on the web.

Acknowledgments

We would like to thank M. Mauro and the following students who provided useful feedback on draft
versions of the book: F. Boscia, M. Borghi, N. Corti, F. Marchini, L. Milli, L. Morlino, S. Pietrosante, P.
Serra and A. Tarquini.

A. A.
S. R.

Part I

Decision Support Systems and
Multidimensional Modeling

1

Chapter 1

DECISION SUPPORT SYSTEMS

An overview of decision support systems is given below, particularly those data-driven, used to synthesize
large amounts of data into a form that is useful to manage the business. The data are first organized in a
special database called data warehouse and then analyzed with appropriate techniques, called On Line
Analytical Processing (OLAP) or with semi-automatic and exploratory techniques, called data mining.
Finally, the characteristics of systems for managing data warehouse are presented, which information
should be represented using an appropriate data model, and how data can be used for decision-making.

1.1 Information Systems

Organizations have used information systems for centuries and they have used a variety of technologies
to deal with information.

� Definition 1.1
An information system is an organized collection of resources, people, and procedures final-
ized to collect, store, process and communicate the information needed to support the on-going
activities.

Nowadays, information is considered to be a critical resource of any organization, as fundamental as
capital or machinery, and, in fact, the majority of the labor force in the industrialized countries works in
some way with information.

Information can be represented as data, images, text, and voice. Clearly, different types of organiza-
tions will have differing needs with respect to the kinds of information they use. However, the attention
here will be on information represented as structured data shared by a variety of users within an organi-
zation, and managed using computers. Reductions in the costs of computer technology, improvements in
performances, and new facilities to support the development of applications have created an increasing
demand for data processing systems. We use the term computerized information system to refer to the
hardware and software which is used for storing, retrieving, and processing the information which sup-
ports the functions of an organization.1 In the following, in brief, we use the term information system for
computerized information system.

Over time, there are continuous interactions between the two components of the information system
and the rest of the organization that will change each other, and this requires attention of management to
plan the evolution of both the organizational structure and the employee tasks (Figure 1.1)

1. Frequently in the literature, information system is used as synonym of computerized information system. Here, we prefer to
make a distinction between the two terms to evidence the fact that a computerized information system will never completely
substitute the global information system of an organization.

1.2. Types of Information Systems 4

DATA

ORGANIZATIONINFORMATION
TECHNOLOGY

DATA
REQUIREMENTS IT

REQUIREMENTS
ORGANIZATION
REQUIREMENTS

DATA
REQUIREMENTS

ORGANIZATION
REQUIREMENTS

IT REQUIREMENTS

Figure 1.1: System Conception of an Information Systems

For example, new requirements of the organization may include the need of new categories of data
being managed by the information system, and to adapt the information technology to provide new
services (e.g, think of an organization that decides to offer web services). New categories of data to
be managed can result in (a) a review of the organizational structure to review, for example, the tasks
and professional employees, (b) an adjustment of the information technology used. The evolution of
information technology can enable new opportunities for data management and set new requirements for
employees and the organizational structure, and so on. The data, the organization, and the technology all
interact and change each other.

1.2 Types of Information Systems

Information systems can be classified in several ways, but for our purposes it is useful to classify them
in the following categories on the basis of the business activities that are required to support.

� Definition 1.2 Taxonomy of Information Systems
Information systems can be classified into the following categories:

– Operational, to perform the business operational activities.
– Decision support, to provide the information that managers need for analyzing the business.
– Web-based for E-commerce, to bring the business to the Web to allow new routes to market.

INFORMATION
SYSTEM

E-COMMERCE OPERATIONAL DECISION
SUPPORT

MODEL DRIVEN DATA DRIVEN

Figure 1.2: Types of Information Systems

These information system categories are all ongoing and in a constant state of improvement. They use
different technology, have different objectives and require different skills to develop. In the following the

1.2. Types of Information Systems 5

attention will be on the first two categories, and in particular on the decision support one, a key driver in
the business world today (Figure 1.2).

1.2.1 Operational Systems

When an information system is implemented using the database technology, it will consist of an oper-
ational database and a collection of application programs (transactions) which are used to access and
update the data quickly and efficiently (Figure 1.3). The main goal of such a transaction processing sys-
tem is to maintain the correspondence between the database and the real-world situation it is modeling,
as events occur in the real world.

DBMS

Logistics

Production

Accounting

Inventory

Human Re-
sources

Sales and
Distribution

DB

Figure 1.3: Transaction processing system

The data are under the control of a Data Base Management System (DBMS), a centralized or distributed
software system, which provides the tools to define the database, to select the data structures needed to
store and retrieve the data easily, and to access the data, interactively or by means of a programming
language.

1.2.2 Decision Support Systems

Decision support information systems can be classified in Management Information Systems and Deci-
sion Support Systems.

The first one is used by middle tactical or administrative managers in monitoring and controlling
their units to correct problems by making decisions based on comparing the actual performance and the
planned performance (variance report). Decision support systems are used to make strategic decisions
about the future directions of the business enterprise, using both historical internal data and external data.

For brevity, in the following we will use the term Decision Support Systems (DSS) for both types of
decision support information systems.

DSS have been introduced in the organizations since the late ’70s to help managers to make decisions
of three types:

– Structured, when a well-defined decision-making procedure exists.
– Unstructured, when a well-defined decision-making procedure does not exists and the experience

and creativity of the manager are required.

1.3. Data Warehouse: A Decision Support Database 6

– Semistructured, when the decision-making procedure is partly defined and so it is also required the
manager’s creative intervention.

There is no strict correspondence between types of decision and levels of decision-making processes,
however, at the operational level decisions tend to be more structured, at the tactical level decisions are
mainly semistructured and at the strategic level decisions are typically unstructured.

The DSS have very different characteristics, but it is useful to classify them into two main types: model-
driven, to take structured or semistructured decisions, or data-driven to take unstructured decisions.

The model-driven DSS are an evolution of the first proposals made at the end of the 70s for decision
support systems and their value depends on the quality of the model used. The simplest solutions uti-
lize spreadsheets for analysis of “what if”, while more sophisticated models are used from operations
research, simulation and artificial intelligence.

The data-driven DSS are designed to synthesize large amounts of data into a form that is useful and
easily interpretable to help managers to assess the performance of business processes and make decisions
to address and resolve any critical issues found. Their value depends on the type and quality of data
generated using synthetic instruments called Business Intelligence. The term intelligence is used with
the meaning of investigating to find out something interesting, like in Intelligence Service.

The operational data accumulated over time, integrated with those from external sources, are a potential
source of information used by managers regardless of their decision-making level in the organization. The
information is derived from the data summarized in an appropriate form and its relevance depends on the
recipient. When experience, competence, and attitude are added to information, knowledge is created,
and actions can be taken. To become actionable, knowledge should also be closely integrated with an
organization’s business processes.
In the following, data-driven DSS will be considered to see how they can be designed to support informed
decisions.

Decision support applications involve quite complex analysis which cannot be efficiently executed
against operational databases, optimized for On Line Transaction Processing (OLTP). For this reason,
organizations maintain a separate database, called data warehouse, which is specifically organized for
such complex analysis.

1.3 Data Warehouse: A Decision Support Database

The first and still now the most widely cited definition of data warehouse was provided by William Inmon
in 1990:

� Definition 1.3
A data warehouse is a subject-oriented, integrated, nonvolatile, and time-varying collection of
data in support of management’s decisions.

Let us examine each of these distinctive aspects of a data warehouse.

1. Subject-oriented. A data warehouse stores data by subject, not by applications, which is what distin-
guishes a data warehouse from an operational database, that stores information in order to optimize
transaction processing. Business subjects differ from organization to organization. They are the crit-
ical subjects for an organization. For example, for a manufacturing company, these would include,
sales, shipments, returns, and inventory.

A data mart is database that has the same characteristics as a data warehouse, but is usually smaller
and is focused on the data for one subject.

2. Integrated. Data are gathered into the data warehouse from a variety of sources and merged into a
coherent whole. For example, a bank can collect different data on customers for the management of
loans, current accounts, or stocks, but they must then be integrated for the purposes of the analysis of
the services offered to customers.

1.3. Data Warehouse: A Decision Support Database 7

3. Time-variant. For an operational system, the stored data contains the current values. On the other
hand, the data in the data warehouse is meant for analysis and decision support, and is thus historical
data identified with a particular time period.
An operational system contains current data, while a data warehouse contains historical data over
long time for analysis and decision support, therefore a time dimension is explicitly included in data
so that trends and changes over time can be analyzed.

4. Non-volatile. The data in a data warehouse is primarily for query and analysis, and it is never changed
interactively. This enables management to gain a consistent picture of the business. Periodically, new
data may be added or those considered obsolete may be removed.

5. Decision support. The primary function of the data warehouse is for decision support, and so it must
be specifically designed to answer business questions. Data is the reality that a computer records,
stores, and processes. The lowest level in the perception of reality is sometimes referred to as “raw
data”. This data is of little benefit unless it can be turned into useful information and knowledge. Data
must be condensed into a more informative format in such a way that managers (or more in general
knowledge workers – executives, managers, and analysts) can get the essence of the underlying data.

Three categories of decision support can be provided. Specifically:

(a) Reports. Reporting is considered the lowest level of decision support. A reporting facility capable
of generating informative reports for managers in time to be useful is of the utmost importance
for the successful operation of any business.

(b) Multidimensional data analysis, sometimes called On Line Analytic Processing (OLAP). Data
analysis is usually accomplished interactively with some kind of data analysis tool. The goal of
data analysis is to get useful information from the data.

(c) Exploratory data analysis. This data analysis technique is very different from reports and mul-
tidimensional analysis: it uses what is called a discovery technique of useful data models with
data mining algorithms. That is, the user does not ask a particular question about data, but rather
he uses specific algorithms that analyze the data and report what they have discovered. Unlike
reports and multidimensional analysis, where the user has to create and execute queries based on
hypotheses, data mining algorithms search for answers. A comparison of the two approaches is
shown in Table 1.1 with some example queries. Data mining algorithms are beyond the scope of
this book.

Table 1.1: Comparison between OLAP and Exploratory data analysis

OLAP Query Exploratory data analysis

Which customers spent most with us in the
past year?

Which types of customer are likey to spend
most with us in the coming year?

How much did the bank lose from loan de-
faulters in the past two years?

What are the characteristics of the cus-
tomers most likely to default on their loans
before the year is out?

What where the highest selling fashion
items in our London stores?

What additional products are most likely to
be sold to customers who buy sportswear?

A data warehouse is usually separated from an operational database for the following reasons:

– Performance. Special data organization, access and implementation methods are needed to support
multidimensional views and data analysis which usually requires complex queries that would degrade
the performance of operational transactions. Moreover, concurrency control and recovery DBMS
modes are not compatible with data analysis.

– Function. Decision support requires (a) historical data, which operational databases do not typically

1.3. Data Warehouse: A Decision Support Database 8

maintain, (b) consolidation (aggregation, summarization) of data from heterogeneous sources, such
as operational databases, external sources, and (c) different sources typically use inconsistent data
representations, codes and formats which have to be reconciled to enforce data quality.

Table 1.2 summarizes the differences between the traditional applications that use databases (On Line
Transaction Processing, OLTP), and the decision support applications that use data warehouses (On Line
Analytical Processing, OLAP).

Table 1.2: Comparison between OLTP and OLAP

OLTP OLAP

Function Operational processing Decision support
Users Clerk, IT professional Knowledge worker
DB design Application-oriented Subject-oriented
Usage 90% repetitive 90% ad-hoc
Data Current, detailed, relational Historical, summarized, multidi-

mensional, integrated
Access Read/write Complex read query
No of users A lot Few
DB size 100 MB to GB 100 GB to TB
Orientation Transactions Analysis

OLAP is a term that was coined in an unpublished 1993 white paper, “Providing OLAP to User Analysts:
An IT Mandate”, by E. F. Codd. By introducing this new term as a play on the then-familiar term on-line
transaction processing (OLTP), the paper signaled a shift in the paradigm for business analysis, in paral-
lel with the shift that had already occurred for transaction processing. Instead of reviewing piles of static
reports printed on green-bar paper, the OLAP analyst could explore business results interactively, dynam-
ically adjusting the view of the data – asking questions and getting answers almost immediately. This
freedom from static answers to fixed questions on a fixed schedule allows business analysts to operate
more effectively and to effect improvements in business operations. In the white paper, the authors out-
lined 12 characteristics of an OLAP system. In a 1995 update to the white paper, six more characteristics
were added.

In the 2004, Nigel Pendse, an analyst with Business Intelligence Ltd. who publishes The OLAP Report,
provides another valuable point of view. In a Web page entitled “What Is OLAP”, Pendse introduces a
simpler model, FASMI (Fast Analysis of Shared Multidimensional Information), to characterize OLAP
systems. Although no single definition is likely to receive universal support, Pendse’s characterization is
much simpler than the Codd rules. Briefly, the FASMI characteristics are:

Fast. In keeping with the spirit of the “O” in OLAP, such systems need to provide results very quickly
– usually in just a few seconds, and seldom in more than 20 or 30 seconds. This level of performance
is key in allowing analysts to work effectively without distraction.

Analytic. Considering the “A” in OLAP, such systems generally must provide rich analytic functions
appropriate to a given application, with minimal programming.

Shared. An OLAP system is usually a shared resource. This means that there is a requirement for OLAP
systems to provide appropriate security and integrity features. Ultimately, this can mean providing
different access controls on each cell of a database.

Multidimensional. Multidimensionality is the primary requirement for an OLAP system, which must
present the data in a multidimensional framework. The motivation for this requirement will be dis-
cussed later on.

Information. OLAP systems must allow the user to easily condense large amount of data into a form
that is useful to business manager and decision makers.

1.4. Data Warehousing Architecture 9

1.4 Data Warehousing Architecture

The term data warehousing is used to refer to the process used to organize data in a data warehouse and
then allow end users to analyze them with business intelligence applications. In practice three types of
solutions are adopted, depending on the number of data layers employed.

One-Layer Architecture. This solution has only one layer of data handled by the operational system,
and the data warehouse is virtual, i.e. it is defined as a view of operational data, possibly materialized),
and it is used by the business intelligence applications (Figure 1.4). This solution does not require a
specific system for managing the data warehouse and it is usually used as the first low-cost solution
for small organizations, but it does not meet the requirement for separation between operational and
analytical applications.

Operational
Database

Data Sources

OLAP
System

Multidimensional
Analysis

Report
Generator

Data
Mining

BI Applications

Figure 1.4: One-layer architecture

Two-Layer Architecture. This solution is more general than the previous one, because a data ware-
house exists separated from the operational database and managed by a specific system. The data ware-
house is loaded with data extracted with Extract, Transform and Load (ETL) applications from the oper-
ational database, and any other structured data sources, to bring them to a consistent form (Figure 1.5).
While the data sources are updated continuously by operational applications, the data warehouse is up-
dated periodically with the ETL applications. This situation typically arises when there are high quality
operational databases with schemas sufficiently similar to that of the data warehouse.

Operational
Database

External
Data

Data Sources

Extract
Transform

Load

ETL Applications

Data
Warehouse

DBMS

Data Warerhouse

Metadata

OLAP
System

BI Applications

Multidimensional
Analysis

Report
Generator

Data
Mining

Figure 1.5: Two-layer architecture

1.5. What to Model 10

This solution separates

– the system for operational database management from the system for data warehouse management
and decision support,

– the operational applications from the business intelligence applications, so that business analysis
would not interfere with and degrade the performance of operational applications.

Metadata is information about the structure, content and interdependencies of data warehouse compo-
nents, to support developers, administrators responsible for the data warehouse and the business intelli-
gence applications.

Three-Layer Architecture. This solution is the most general with three data layers: the data sources,
the data staging and the data warehouse. The data staging contains data obtained from the integration
of different data sources and prepared for loading into the data warehouse (Figure 1.6). The data staging
may just be a set of files or, at other extreme, a fully developed relational database. The complexity of
data staging layer depends on the quality of the data sources.

This solution separates the process of extraction and integration of data sources from the process of
data reorganization and loading into the data warehouse.

Operational
Database

External
Data

Data Sources

Extract
Transform

Load

ETL Applications

Data Staging

Data
Warehouse

DBMS

Data Warerhouse

Metadata

OLAP
System

BI Applications

Multidimensional
Analysis

Report
Generator

Data
Mining

Figure 1.6: Three-layer architecture

1.5 What to Model

According to [Artz, 2005], to support managers in decision-making, data must be organized taking into
consideration how they use such data to support their decisions about the performance of key business
processes.

� Definition 1.4
A database is designed to represent some aspects of a reality in terms of the information available
about collections of entities with properties and relationship sets between them, while a data
warehouse is a specialized database designed to represent some aspects of key business processes
in terms of collections of facts about the interesting process measurements, that represent how the
processes are being performed, and a set of dimensions, which provide the context of the facts, to
be used for analyzing the process performances.

Let us describe more precisely what to model to help managers in analyzing a business process.

Managers are interested in analyzing collections of facts about the performance of a key business
process, measurable and worthy of improvement.

1.5. What to Model 11

A fact, in this context, is represented by a set of numerical attributes (hereafter measure) by which the
process performance is tracked and measured in order to maintain or improve their efficiency. In data
warehousing terminology, the interval at which we take measurements is called the grain.

Examples of measures for a sale of a product are Quantity, Price, and Revenue. However, without some
context, the measures are useless.

Managers think in terms of business dimensions, which give facts their context, and are used to
analyze them to evaluate their effects.

For sales data, the dimensions could include Product, Date, and Store. Dimensions contain the descriptions
of the subject being measured. Examples of questions managers use to ask for decision-making are:
“Show me the total sale revenue by product, year, and store”, “Show me the current and previous year-
to-date sales revenue, and percentage change, by product and by store”.

Managers analyze measurable business process performance using summary data (called met-
rics) obtained by grouping facts by different dimensions and combinations of dimensions, and
then aggregating measures into useful forms.

Commons metrics are about economic and financial indicators, but when they are about efficiency and
quality of process, are called Key Performance Indicators, KPI, because they help understanding how
a business process is doing against an objective.

Managers are interested in analyzing metrics in various levels of details, by exploiting the fact
that some dimensions have a set of associated attributes that can be structured as a hierarchy.

A date dimension, for example, with attributes Day, Month, Quarter and Year, could have a hierarchy
Day < Month < Quarter < Year, with the meaning that Year is the highest level of generality within the
hierarchy, the second level Quarter tells us that more than one quarter is contained in an year, and so on.
The combination of a multidimensional and a hierarchical view allows managers to get a good deal of
information from data analysis. For example, managers first see the total sales revenue for the entire year
by product, then they move down to quarters to look at the sales by quarter and product.

Example 1.1
Let us consider the sales data stored in the relational table Sales(Product, Store, Date, Quantity), where
Quantity is the measure and the other attributes are the dimensions that describe a sale fact. A data
analysis usually does a dimensionality reduction (grouping) to partition a set of rows whose mem-
bership is characterized by the fact that all of the rows in a single group agree on the values of the
dimensions that are left out. Each group is then aggregated by a function to compute a metric from
the measure values. By aggregation means to compute a single value from a list of values using an
aggregate function such as SUM, COUNT, MIN, MAX, AVG.

Let us look at some examples of an interactive multidimensional data analysis concerning the
total quantity of products sold (the metric) to be analyzed by a subset of the dimensions Product,
Store, Date. The point is that the user begins with a business question to which wants to answer
with the data, gets the results, analyzes the results, uses this new information to formulate another
business question, and so on. Later on we will see how to express business questions in SQL to
produce the results.

1. The total sales quantity by product, to determine which product is sold best.

Product Total Sales
Qty

P1 27 407
P2 5 179
P3 3 446

1.5. What to Model 12

2. The total sales quantity by product and by store, to determine where it is best to sell certain
products.

Product Store Total Sales
Qty

P1 S1 13 945
S2 9 875
S3 3 587

P2 S1 1 950
S2 2 500
S3 729

P3 S1 1 000
S2 1 200
S3 1 246

3. A common type of analysis is a generalization of the former: we want to aggregate the measures
on some dimensions and also provide the subtotals for each value of all dimensions. This anal-
ysis produces a report such as the one in which shows the total sales quantity by product and by
store, extended with subtotals for products, for stores, and with the overall total.

Product Store Total Sales
Qty

P1 S1 13 945
S2 9 875
S3 3 587

P1 Total 27 407

P2 S1 1 950
S2 2 500
S3 729

P2 Total 5 179

P3 S1 1 000
S2 1 200
S3 1 246

P3 Total 3 446

Total 36 032

4. Starting with the results of a previous analysis, we can proceed to a more detailed one. For
example, after a look at the percentage change of annual quantity sales of products we can also
do an analysis by store to understand the decrease in sales of the product ‘P2’.

Product Total Sales Total Sales Change
Qty 2009 Qty 2010 (%)

P1 12 845 14 562 13
P2 2 753 2 426 −12
P3 1 567 1 879 20
Total 17 165 18 867 10

1.5. What to Model 13

Product Store Total Sales Total Sales Change
Qty 2009 Qty 2010 (%)

P1 S1 6 445 7 500 16
S2 4 225 5 650 34
S3 2 175 1 412 −35

P1 Total 12 845 14 562 13

P2 S1 900 1 050 17
S2 1 200 1 300 8
S3 653 76 −88

P2 Total 2 753 2 426 −12

P3 S1 450 550 22
S2 580 620 7
S3 537 709 32

P3 Total 1 567 1 879 20

Total 17 165 18 867 10

The reports for decision support are usually represented in a very different form from the ones shown
above. They are much more visually pleasing and intuitive, like the dashboard of a vehicle, using graphics
and color-coded alarms to highlight trends, exceptions or values lower than predefined ones (Figure 1.7).
Microstrategy, a very active company in the Business Intelligence arena, has some interesting examples
on http://www.microstrategy8.com.

Figure 1.7: Example of Scorecard & Dashboard

1.6. Concluding Remarks 14

1.6 Concluding Remarks

Decision support systems, designed to synthesize, with business intelligence tools, large amounts of data
in ways useful to make more rapid and objective decision making, had a growing popularity in recent
years for their value strategic and competitive. There has been three very interesting analysis of this
trend:

– T. H. Davenport, G. C. Harris, Competing on Analytics: The New Science of Winning, Harvard Busi-
ness School Press, Boston 2007, for the American context.

– Monitoring Business Intelligence, Report 2007-2008, SDA Bocconi, for the Italian context.
– T. Burelli, A. Marzona, M. Pighin, From intuition to knowledge, Arachne, Roma, 2007, for the Italian

context of small and medium businesses.

It is also interesting to read an article that appeared in print on April 23, 2011 of the The New York Times
edition with the heading When There’s No Such Thing as Too Much Information, by Steve Lohr. Here is
an excerpt of what he says:

Information overload is a headache for individuals and a huge challenge for businesses. Compa-
nies are swimming, if not drowning, in wave after wave of data — from increasingly sophisticated
computer tracking of shipments, sales, suppliers and customers, as well as e-mail, Web traffic
and social-network comments. These Internet-era technologies, by one estimate, are doubling the
quantity of business data every 1.2 years.
Yet the data explosion is also an enormous opportunity. In a modern economy, information should
be the prime asset — the raw material of new products and services, smarter decisions, competi-
tive advantage for companies, and greater growth and productivity.
Is there any real evidence of a data payoff across the corporate world? It has taken a while, but
new research led by Erik Brynjolfsson, an economist at the Sloan School of Management at the
Massachusetts Institute of Technology, suggests that the beginnings are now visible.
Mr. Brynjolfsson and his colleagues, Lorin Hitt, a professor at the Wharton School of the Univer-
sity of Pennsylvania, and Heekyung Kim, a graduate student at M.I.T., studied 179 large compa-
nies. Those that adopted data-driven decision making achieved productivity that was 5 to 6 percent
higher than could be explained by other factors, including how much the companies invested in
technology, the researchers said.
In the study, based on a survey and follow-up interviews, data-driven decision making was defined
not only by collecting data, but also by how it is used — or not — in making crucial decisions, like
whether to create a new product or service. The central distinction, according to Mr. Brynjolfsson,
is between decisions based mainly on data and analysis and on the traditional management arts
of experience and intuition.

After having presented what is modeled in a data warehouse, in the following the attention will be on:

– How to model: which data model is used to model a data warehouse.
– How data warehouses are designed: which methodology is used for the design of a data warehouse.
– How data are analyzed: which operators are available to analyze data.
– How to implement a data warehouses system: which relational DBMS technological extensions

are needed to support operations on data warehouses.

1.7 Summary

– An information system is a system whose purpose is to store, process, and communicate information.
– The focus of an operational information system is the execution of business processes, the focus of a

decision support information system is the evaluation of the processes, while the focus of a web-based
information system is the use of internet web to allow new routes to market.

1.7. Summary 15

– A data warehouse is a decision support database with historical, nonvolatile data, to facilitate analysis
of the performance of key business processes, worthy of improvement.

– Data warehouses and operational databases provide different functions and require different kinds
of data, therefore they need to be maintained separately.

1.7. Summary 16

Chapter 2

DATA WAREHOUSE MODELING

The purpose of a data warehouse is not just to store data but rather to facilitate decision making. As
such, the first step is to model a data warehouse on the basis of the relevant types of business analyses.
Data warehouse modeling is a process that produces a well-organized abstract dimensional data model
to understand the structure and contents of the data to best support the needs of the business users. In
the following sections, three examples of data models are presented that are relevant in dimensional
modeling, using the basic concepts of facts, measures, dimensions and hierarchies:

– A conceptual multidimensional model, useful to reason about the characteristics of data at a con-
ceptual level, independent of implementation concerns, as it happens with the Entity-Relationship
model for databases.

– A multidimensional relational model, the traditional logical model to represent data in data ware-
house systems.

– A multidimensional cube model, useful to show the basic operators for data analysis.

2.1 Conceptual Multidimensional Model

While it is universally recognized that a data warehouse is based on a multidimensional model, there
is no agreement on the approach to the conceptual modeling. In what follows, we will present a sim-
plified version of the Dimensional Fact Model (DFM), proposed in [Golfarelli et al., 1998], a graphical
conceptual model for data warehouses, aimed at

– effectively supporting conceptual design,
– enabling communication between the designer and the final user in order to refine requirements spec-

ification,
– supplying a stable platform for logical design, and
– providing an expressive and non-ambiguous design documentation.

The formalism enables the representation of the following basic information.

Facts
The most important abstraction mechanism of the conceptual model is the collections of facts, i.e., the
collection of observations of the performance of a business process. Facts are modeled by a rectangle
divided in two parts, which contain the facts name and the set of measures. A measure is a numerical
property of a fact that describes one of its quantitative aspects of interests for analysis.

Sometimes, facts are without measures, and are usually called factless facts, but in accordance with
our terminology we call them measureless facts. This happens when facts represent events that only need
to be counted.

Dimensions
Dimensions give facts their context, and are used to analyze them. Dimensions are represented by lines
emanating from the rectangle of facts and ending with a circle (Figure 2.1). In general a dimension is
described by a set of attributes used to qualify, categorize, or summarize facts in reports. For example,

2.1. Conceptual Multidimensional Model 18

the dimension Date has the attributes Day, Week, Month, Quarter, and Year, while the dimension Store has
the attributes City, State and Country. Dimensional attributes are represented as shown in Figure 2.2a, and
the same names should not be used for attributes of different dimensions.

Sales
Quantity
Price
Revenue

DateFact

Measures Dimensions

Store

Product

Figure 2.1: A conceptual design without dimensional attributes

Dimensional Hierarchies
In the presence of dimensional attributes, an interesting aspect to model, for the purposes of the data
analysis, is a particular hierarchical relationship between their values, i.e., a many-to-one association
between pairs of dimensional attributes. For example, the values of Month are in the hierarchy with those
of Quarter and Year (Month→ Quarter→ Year), in the sense that a year is made up of more quarters, and a
quarter is made up of more months, and, viceversa, a month corresponds to a single quarter, and a quarter
corresponds to a single year. For this reason it is said that Year is more general than Quarter, and Quarter
is more general than Month. In the terminology of the relational data model, each arc of the hierarchy
models a functional dependency between two attributes.

Dimensional hierarchies are represented as shown in Figure 2.2b, with a directed tree, rooted in a
dimension, and leaves representing the most general attributes.

Sales
Quantity
Price
Revenue

Date
Month

Week

Day

Quarter

YearProduct

CategoryName

Store

State
City Country

(a) Without dimensional hierarchies

Sales
Quantity
Price
Revenue

Date

Week

Day

Month

Quarter

YearProduct

Name Category

Store

State
City Country

(b) With dimensional hierarchies

Figure 2.2: A conceptual design with dimensional attributes

Since a week usually crosses the boundary of two consecutive months, it is usually not treated as a
lower abstraction of month. Instead, it is treated as a lower abstraction of year, since a year contains
approximately 52 weeks.

2.1. Conceptual Multidimensional Model 19

The presence of a hierarchy between the dimensional attributes increases the possibilities of data anal-
ysis from different perspectives (Multidimensional Analysis). For example, once the sales of products
have been analyzed by year, we can have a deeper analysis at a different level of detail to analyze product
sales by quarter.

The formalism enables the representation of other information. Let us see some examples (Figure 2.3).

Sales
Quantity
Price
Revenue
Commission

Date

Week

Day

Month

Quarter

Year

Agent
Supervisor

Product
Name

Category

BillNumber
LifetimeWarranty

Customer

Billing
Customer

Shipping
Customer

State
|

City
Country

Figure 2.3: A conceptual design with other Dimensional Fact Model features

1. Descriptive attributes. Dimensions and dimensional attributes are usually represented with arcs end-
ing with a circle to model that their values may be used in data analysis for selecting or grouping facts
data. However there are cases in which dimensions and dimensional attributes are to be considered
descriptive in the sense that in the data analysis is used only for selecting data, or to show their values
in the report result, but not for grouping or aggregating data. A descriptive attribute is represented
with an arc without a circle.

2. Degenerate dimensions. Dimensions without any attributes are called degenerate dimensions. Usu-
ally these are transaction-based numbers which describe the fact, but are not measures because it is
meaningless to aggregate them. A typical example is a Bill number (Figure 2.3).

3. Optional attributes or dimensions. When the value of an attribute or a dimension may be undefined,
the corresponding arcs are “cut”.

4. Types of hierarchy. A hierarchy among dimensional attributes can be of the following types:

– Balanced, when the possible levels are a predefined number and the attribute values are always
defined. For example, the Date attributes Month, Quarter and Year belong to a balanced hierarchy
with three levels.

– Ragged, when the values of one or more attributes may be undefined. A ragged hierarchy is
graphically denoted by marking with a dash the attributes whose values may be undefined. For
example, a location dimension with attributes Country, State and City, is balanced in the US, but it
is ragged for most European countries where State is non used.

– Recursive (unbalanced), when the possible levels are a variable number. For example, in the
dimension Agent there is the attribute Supervisor representing a recursive hierarchy among agents.

In the conceptual schema, a ragged hierarchy is represented by cutting the circle of the interested
attribute, and a recursive hierarchy is represented with a loop.

5. Shared hierarchy. The dimensions can share some hierarchy attributes, such as City and Customer.
To avoid ambiguity the circle is doubled and the arcs are oriented. Another typical example is the

2.1. Conceptual Multidimensional Model 20

date hierarchy: a fact may have more than one Date dimension, with different semantics, and it may
be useful to share among them the hierarchy month-quarter-year.

6. Multivalued dimension or attribute. A fact may be associated with more than one value of a di-
mension. For example, the fact sale is associated with several salespeople who have promoted it. In
this case, the outgoing arc from the fact ends with a double arrow. Besides dimensions, dimensional
attributes also may be multivalued, and represented in the same way.

2.1.1 Considerations on the Conceptual Modeling of a Data Mart

While in a database project, the focus is on collections of entities, their properties, associations and
hierarchies between collections, in a data mart project, the focus is on the collection of facts, their mea-
sures, their dimensions, attributes and hierarchies [Kimball and Ross, 2002a], [Adamson and Venerable,
1998].1

Let us present the key steps in conceptual design of a data mart, assuming that the business process of
interest has already been identified together with the key analysis to be performed on the data to get the
necessary information to make better business decisions. The example is about the business process of
registration of customer orders. The objective is the analysis of the portfolio to adapt marketing strategies,
promotion and inventory management.

Step 1: Identify the Granularity of the Fact
When modeling a data mart, the first fundamental decision to be taken is the meaning of the fact, because
from this choice derive the measures that characterize the fact and the dimensions for its analysis. This
is a classic problem in the design of data marts: you must carefully choose the right grain of the fact, i.e.,
the precision with which the measurements are taken.

In the case of customer orders, it could be said that the interesting thing is the Order, but, thinking
about its meaning, we find that there is a problem, because an order is composed of a header and one or
more lines, and we should decide if the fact is the header, about all products ordered, or the line for each
product ordered.

As a general rule, it is best to choose a fine grain, even if it increases the number of facts to be treated,
and so to choose a order line as a fact, because later in the analysis with aggregation functions, you can
always go from the measures about the lines to the measures about the orders. If, instead, we focus on
orders, there is no way to do the analysis in reverse order to move from measures about the orders to
measures of individual lines.

Another consideration to keep in mind for the choice of the granularity of the fact is its nature, which
may be of the following types (Figure 2.4).

Feature Transaction Periodic Accumulating

Time period Instant of time Regular interval Indeterminate period of time,
represented usually of short duration

Grain One fact per One fact per One fact for the
transaction time period entire lifetime of an event

Update No No For each state change

Measures Related to transaction Related to periodic Related to activities which
activities. activities. have a definite lifetime lifetime.

Dimension Event Date Date at the Multiple date dimensions
Date end-of-period to show the achievement

of different milestones

Figure 2.4: Comparison of fact types

1. We are grateful to Nicola Ciaramella for his contribution to the preparation of this section.

2.1. Conceptual Multidimensional Model 21

� Definition 2.1
A Transaction Fact represents the information on a specific event that occurred at a specific point
in time during the execution of a business process.

For example, a fact is a transaction (withdrawal or deposit) on a bank account.

� Definition 2.2
A Periodic Snapshot Fact represents the information on a series of events that have occurred
over a period of time.

For example, a fact is the monthly summary of all transactions on a bank account.

� Definition 2.3
An Accumulating Snapshot Fact represents the information on the lifetime of an evolving event
that has a duration and change over time.

For example, the fact is about a mortgage application which is processed with the following phases:
1) presentation of the documents by the applicant as requested by the bank, 2) the bank’s assessment
of the documentation made available by the applicant, 3) approval of the practice and the initiation of
investigative procedures; 4) mortgage completion. At the end of each phase, the fact about a mortgage
application changes with the specification of the relevant information about its state. A solution for this
case is presented in the appendix on case studies.

Cardinality of the facts
The grain of the fact determines the size of the set of facts that can be estimated using the estimates of
the number of possible values for each dimension.

For example, let us consider the monthly Sales facts of the last five years, with the following total
number of dimension values: Date (12× 5 = 60), Product (5 000), and Store (200).

If all the products are sold by all stores during a given month, there is a fact for each combination
of dimension values, and so the number of sales facts is obtained by multiplying the dimension sizes
(60 × 5000 × 200 = 60 000 000). Thus, the number of facts is many times larger than the dimension
sizes.

In general, the number of combinations that actually appear in the set of facts is much less than this
maximum number, because only some products are likely to be sold by each store during a given month.
This property is referred to as facts sparsity.

The cardinality of the facts depends on both the number of dimensions and the grain of the fact.
Suppose that the marketing department requests that daily sales must be considered as facts. With the
grain of sales changed to daily, the number of fact sales becomes 1 825 000 000. In this way, a fine
granularity could result in a huge cardinality of the facts. Conversely, a too coarse granularity could
result in facts that are not detailed enough for users to perform meaningful analysis.

Step 2: Identify the Fact Measures
Once the fact to represent has been chosen, the numerical measurements of interest are defined. A mea-
sure describes one of the fact’s quantitative aspects of interest for analysis.2 Facts may be also without
measures, when used only to represent the occurrence of an event, such as the attendance of a student in
a course.

In choosing a measure we need to ask whether it makes sense to aggregate them with the function
SUM, for analysis of the type “total value of the measure M , grouping data by dimension D”, which

2. The measurements are referred to as measures or facts, but we prefer the term measures because it is more descriptive.

2.1. Conceptual Multidimensional Model 22

is usually expressed in the abbreviated form “total of M , by D”. In general, the aggregations with the
function SUM are the most used in the analysis, but do not fall into the trap of believing that everything
that can add up is an interesting measure, or that the sum is always meaningful. In general, the following
measure types are considered.

� Definition 2.4
An additive measure (also called a flow or rate measure) can be meaningfully aggregated with
the function SUM by any dimension.

An additive measure is the most common type of measures. It refers to a time period and it is evaluated at
the end of the period to record the cumulative effect over the period. For example, the number of products
sold in a day or the monthly income.

� Definition 2.5
A semi-additive measure (also called a stock or level measure) can be meaningfully aggregated
with the function SUM by certain dimensions, but not all.

A semi-additive measure refers to a particular point in time and it is evaluated to record the state of an
event. For example, the monthly account balance or the monthly inventory quantity-on-hand.

� Definition 2.6
A measure M is semi-additive with respect to a dimension D1 when it can not be aggregated with
the function SUM for groups of data with different values of D1.

Therefore, it makes sense to perform an analysis of the type “total ofM , byD1” — but not by a different
dimension D2 — or to perform analyses of the type “total of M of data with a certain value of D1, by
D2”. However, M may be aggregated with other functions such as AVG, MIN, MAX, for groups of data
with different values of D1.

For example, the bank measure Account balance is semi-additive with respect to a dimension Date, but
adding the Account balance for a particular day by the dimension Customer, or Branch, or Account can
provide a meaningful information for the total amount of money the bank is holding at a given point in
time.

Example 2.1
Let us consider the monthly Quantity-on-hand measure for different products and store at the end
of every month. Quantity-on-hand is semi-additive with respect to both the dimension Month, and
the dimension Product. In fact, it is not meaningful to total the Quantity-on-hand by Product because
we would total values of different months, but it also not meaningful to total the Quantity-on-hand
by Month because we would total values of different products. It is correct to total the Quantity-on-
hand by Month and by Product, or to total the Quantity-on-hand of the product P1 by Month, or to
total the Quantity-on-hand of the month M1 by Product.

Inventory

Product Store Month Quantity-on-hand

P1 D1 M1 300
P1 D2 M1 100
P2 D1 M1 500
· · · · · · · · · · · ·
P1 D1 M12 100
P1 D2 M12 0
P2 D1 M12 900

2.1. Conceptual Multidimensional Model 23

� Definition 2.7
A non-additive measures (also called value-per-unit measures) cannot be aggregated with the
function SUM by any dimension.

Non-additive measures are usually the result of ratios. The only calculation that can be made for such a
measure is counting the number of facts with such measures. Examples of non-additive measures include:

– Per-unit price cannot be added by any dimensions, while an extended price, such as Per-unit price ×
Quantity purchased, it is correctly additive by all dimensions.

– Percentages and ratios. A ratio, such as Gross Margin = Margin / Revenue, is non-additive. Whenever
possible, such measures should be replaced with the underlying calculation measures (numerator and
denominator) so that the calculation is made in the analysis as a metric. It is also very important to
understand that when adding a ratio, it is necessary to take the sum of numerator and denominator
separately and these totals should be divided.

– Measure of intensity such as the room temperature.
– Averages such as average sales price.

� Definition 2.8
A calculated measure is a measure calculated on the basis of other measures.

It is strongly suggested that standard calculated measures are defined to avoid having users perform these
calculations, because often they do not agree on their semantics and may perform wrong calculations.
Moreover, having users doing standard calculations runs the risk of making the data warehouse seem
unfriendly and complex, and, much worse, if the answers are wrong or inconsistent, the data warehouse
will be viewed as wrong.

Example 2.2
Let us consider the following interesting measures for the fact OrderLines

OrderLines
Quantity
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

– The Quantity is the total number of products ordered.
– The ExtendedPrice and the ExtendedCost are calculated as follows

ExtendedPrice = Unit Price × Quantity
ExtendedCost = Unit Cost × Quantity

– The Discount is the value to be subtracted from the extended price.
– The Revenue and the Margin are calculated as follows

Revenue = ExtendedPrice − Discount
Margin = Revenue − ExtendedCost

Step 3: Identify the Fact Dimensions
The dimensions are chosen to provide context for facts. Without context, facts are impossible to analyze.

2.1. Conceptual Multidimensional Model 24

To choose the dimensions, it is useful to consider the classic suggested questions to analyze the facts of
everyday life (the 5W-1H rule: who, what, when, where, why, how).

Who is the fact about?
With reference to the orders, they are generated by customers and, for example, it is interesting to analyze
the order lines by customers to compute the total revenue. Thus, we select a Customer dimension and then
later on we will define its attributes of interest. The question about who has another interesting answer: an
order involves both the customer and the sales person that promotes the order on behalf of the company,
and therefore SalesPerson is another relevant dimension.

The choice of a dimension is not always clear. However, it is useful to ask a question like this to find
the right answers in the specific case under consideration.

What is a fact about?
As regards the order lines, a fact is about a product. Therefore, there is a Product dimension, and the
choice is justified by the fact that it is meaningful and interesting to analyze order lines by products
involved. This dimension is used to analyze the total revenue and cost of order lines by products of a
certain category.

We wonder now if there are other interesting answers to the question of what is an order line about.
No other relevant answers immediately come to mind.

When did a fact take place?
For when the answer is that we identify an instant in time or a time period. The two choices are not
equivalent. In the case of customer orders, if we consider the order as an instant in time, then we can
always perform an analysis by a time period, the converse is not true. For an analyst of business trends the
time period is more interesting: to know the hour and minute of an order has its operational importance,
but how orders are going is unlikely to be relevant; the preferred analysis will be by day or even better
by month.

For our example we decided to choose the Date dimension for order lines, as it usually happens in any
multi-dimensional model used in companies.

Where did a fact take place?
The question involves the definition of a Location dimension, another dimension that appears very often in
real multidimensional models. For our example, this dimension is not considered because it is assumed
that the location information is the customer city.

Similarly we could proceed further by asking questions such as Why did a fact happen?, How did a
fact happen? to discover other dimensions, but the example does not suggest interesting answers.

We have a multidimensional model with the fact OrderLines and the dimensions Customer, SalesPerson,
Product, Date, and now it is necessary to establish the attributes of dimensions and any hierarchy among
them.

Before proceeding to the definition of the dimension structure it is useful to ask whether it is appro-
priate to associate to the facts descriptive attributes or degenerate dimensions. For the fact OrderLines, in
addition to the measures discussed above, we consider useful also the degenerate dimension OrderNumber
and the descriptive attribute OrderLineNo (Figure 2.5): analysis by OrderNumber is useful for finding the
average revenue by order, and (OrderLineNo, OrderNumber) is useful for identifying each line on an order.

2.1. Conceptual Multidimensional Model 25

OrderLines
Quantity
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

Date

OrderNumber
OrderLineNo

Product

CustomerSalesPerson

Figure 2.5: The data mart OrderLines conceptual design: the dimensions

Step 4: Identify Dimensional Attributes
Dimensions are the qualifiers that make the measures of the facts meaningful, because they answer the
5W-1H aspects of a question. To perform a more interesting analysis, it is generally necessary to describe
each dimension with attributes relevant to the analysis that must be performed, and thus such that for
each their value a subset of the facts on which a measures aggregation is somewhat interesting can be
identified.

Let us consider the Date dimension. It is easy to imagine that among the requirements there may be
both analysis of order lines by the Day attribute to compute the sum of revenues, and analysis by other
date attributes, such as Month, Quarter and Year.

Let us consider then the Customer dimension and ask if it makes sense and is relevant to group cus-
tomers by city of residence. The answer is yes because the information that the customers of a city have
issued orders for a total amount higher than those of other cities helps to make a decision of whether to
intervene on customers of different cities in a different way with different promotions.

This reasoning draws similar concepts that underlie the segmentation of customers. A customer seg-
mentation is useful if

– segments behave differently with respect to their buying behavior;
– segments have a certain homogeneity behavior;
– it is possible to operate on segments with differentiated promotion actions.

Theories of customer segmentation also require other properties of a good segmentation, such that the
segments are large enough to warrant different marketing actions, but the three properties listed capture
the essence of the idea of segmentation: identifying customer groups that have a common behavior, which
is very different from that of other groups, and so different marketing effort must be studied.

This statement is simply the principle underlying the clustering, one of the most important and inter-
esting strategies for data mining. If we apply these principles to the structuring of dimensions, it turns
out that the grouping of data may also be done following other criteria. For example, it is usually not
necessary that the Date dimension is structured into periods, but if the sales are about products with
strong seasonality, then it will be interesting to divide time into seasons defined according to the logic
inherent to the phenomenon to be analyzed. Suppose that some products are sold almost exclusively in
the pre-Christmas period, in this case the year can be divided into two periods, one from the beginning
of December until Christmas, the other covering the rest of the year. Another example is that it may be
useful to make a distinction between sales on the weekend and those on other days.

If we think of a dimensional model of the data of an urban public transport company, we discover
that we need to move from the day to time periods, such as entry and exit from offices or schools. The
definition of time periods is not standard: it is a decision that must be taken according to the logic inherent

2.2. Multidimensional Relational Model 26

to the movements of travelers, but also according to the logic of company operations. For example, early
morning (6 a.m. to 8 a.m.), late morning hours (8 a.m. to 11 a.m.), rush hour (11 a.m. to 1 p.m.), lunch
hour (1 p.m. to 2 p.m.), and so on.

If the company cannot change its way of operating at night, then breaking the night time in time
periods serves only to satisfy curiosity, but ends up complicating the report without any real added value
for decision-making.

In general, the structure of a dimension should therefore reflect two logics:

– The logic of the event to be analyzed: the values of dimensional attributes at every level of the hier-
archy, are used to group fact data so that groups are internally homogeneous and different between
themselves with respect to the values of the measures, to help the analyst to understand what the
factors that influence the event are.

– The logic of company operations: the values of dimensional attributes at every level of the hierarchy
are used to group fact data so that groups are internally homogeneous and different between them-
selves with respect to their reaction to the actions of the company, to help the decision maker to revise
their actions in order to influence the event.

Step 5: Identify the Dimensional Attribute Hierarchies
Dimensional attributes are useful for generating readable reports, but the most interesting attributes for
interactive multidimensional analysis are organized into hierarchies to allow groupings of facts data
and aggregations of the measures at different levels of generality, as usually required in practice. For
example, in the case of the Date dimension, the hierarchy Day→ Month→ Quarter→ Year is relevant. The
hierarchies of interest for the other dimensions are shown in Figure 2.6.

OrderLines
Quantity
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

Date
Day

MonthName

DayOfWeek

Month

Quarter

Year
OrderNumber

OrderLineNo

ProductName

Category

Customer

CustomerId

City State
Country

SalesPerson

SalesArea

SalesPersonName

Figure 2.6: The data mart OrderLines conceptual design with dimensional hierarchies

2.2 Multidimensional Relational Model

A conceptual multidimensional schema is transformed into a relational logical schema by applying a set
of mapping rules, as will be described in the following chapter. The result depend on the complexity of
the conceptual schema, and in this section, we show only the basic idea of the structures of specialized
schemas usually used, called star schema, snowflake schema and constellation schema.

2.2. Multidimensional Relational Model 27

� Definition 2.9
A star schema consists of a fact table, which contains the data about the facts to be analyzed,
and a set of dimension tables, one for each dimension. Each of the dimension tables has a single
attribute primary key which has a one-to-many relationship with a foreign key in the fact table.
Usually a dimensional primary key is a simple integer surrogate key that is numbered sequentially
from 1 to the number of records in the dimension table. Usually a meaningful integer surrogate
key of the form YYYYMMDD is used for a date with the granularity of a day (e.g. 20140926 for
September 26, 2014).

The fact table is at the center of the “star”, whose tips are the dimension tables (Figure 2.7). A star
schema is an intentional simplification of the database design that would be achieved by following the
standard rules of normalization.

Note that using the surrogate key YYYYMMDD for the dimension Date, the Day attribute is useless and
a value of the Month attribute is an integer of the form YYYYMM to represent correctly the dimensional
hierarchy Month→ Year.

Sales

SalesAmt
Date Day

Month

Year
Product

Price
Name Category

Market

State
City Country

Name

(a) The conceptual design

Sales
MarketFK
DateFK
ProductFK
SalesAmt

Market
MarketPK
Name
City
State
Country

Date
DatePK
Month
Year

Product
ProductPK
Price
Name
Category

(b) The relational design

Figure 2.7: Example of a star schema

� Definition 2.10
A snowflake schema is a variant of the star schema, where some dimension tables are normalized,
thereby further splitting the data into additional tables.

The saving of space is usually negligible in comparison to the typical magnitude of the fact table (Fig-
ure 2.8). Furthermore, the snowflake structure can increase the time to execute queries that require hierar-
chies to be traversed, since more joins will be performed to execute them. Hence, although the snowflake
schema reduces redundancy, it is not as popular as the star schema in data warehouse design.

2.3. Multidimensional Cube Model 28

Sales
MarketFK
DateFK
ProductFK
SalesAmt

Market
MarketPK
Name
CityFK

City

CityPK
City�UK�
StateFK

State
StatePK
State�UK�
Country

Date
DatePK
Month
Year

Product
ProductPK
Price
NameFK

Name
NamePK
Name�UK�
Category

Figure 2.8: Example of a snowflake schema

� Definition 2.11
A constellation schema has multiple fact tables that share dimension tables.

The example given in Figure 2.9 has two fact tables Sales and Returns sharing the Date and Product
dimensions.

Sales
MarketFK
DateFK
ProductFK
SalesAmt

Returns
CustomerFK
DateFK
ProductFK
Quantity

Market
MarketPK
Name
City
State
Country

Customer
CustomerK
Gender
Age
Income

Date
DatePK
Month
Year

Product
ProductPK
Name
Category
Price

Figure 2.9: Example of a constellation schema

The main relational DBMS vendors provide OLAP servers that map operations on multidimensional data
to standard relational operations on specialized relational DBMS to store and manage data warehouses.
Such servers are referred to as ROLAP (Relational OLAP).

2.3 Multidimensional Cube Model

� Definition 2.12
A multidimensional cube model (data cube) represents facts with n dimensions by points in an n-
dimensional space. A point (a fact) is identified by the values of dimensions and has an associated
set of measures.

Such a multidimensional view is an intuitive way to think about OLAP queries and their results. For the
sake of simplicity, we will consider a cube with at most three dimensions and one measure.

2.3. Multidimensional Cube Model 29

Example 2.3
Let us consider the analysis of the daily sales of different products in different stores over different
days. Let us assume that data are stored into a fact table such as that shown in the figure (a). Store
identifies a store, Product identifies a product, Date identifies a day, and Qty identifies the quantity
sold of that product at that store in that time period.

Store Product Date Qty

S1 P1 D1 300
S2 P1 D1 500
S3 P1 D1 50
S1 P2 D1 30
S2 P2 D1 50
S3 P2 D1 400
S2 P1 D2 200
S3 P1 D2 600
S1 P2 D2 900
S2 P2 D2 800
S3 P2 D2 70

(a) Fact Table

Store
S1 S2 S3

(b) Data Cube

Product

P1

P2

D2

D1

Date

300 500 50

30 50 400

200 600

900 800 70

We can view this sales data as 3-dimensional, because the value of the measure Qty is a function of
the Store, Product, and Date attributes, which form the so-called dimensions. Consequently, we can
also think of the data in a fact table as being arranged in a 3-dimensional cube shown in the figure
(b). For example, the cell (’S1’, ’P1’, ’D1’) contains the sales for the product P1 on date D1 by the store
S1.

The 3-dimensional cube is a generalization of a 2-dimensional cross-tabulation commonly used
to give a basic picture of how two attributes inter-relate because it helps to search for patterns of
interaction.

Store

Product S1 S2 S3

P1 300 500 50
P2 30 50 400

When dimensions have attributes and hierarchies, the multi-dimensional cube is more complex. We will
assume that additional information about the dimensions are stored in tables, which describe dimensions’
attributes.

Some vendors provide OLAP servers that implement the fact table as a data cube using a specialized
data structure. Such implementations are referred to as MOLAP (Multidimensional OLAP).

2.3. Multidimensional Cube Model 30

2.3.1 OLAP Operations in the Multidimensional Data Model

Let us show some typical OLAP operations for multidimensional data. Each of the operations described
below is illustrated in Figure 2.10.

S1 S2
Store

S3

Dat
e

P1
Product

P2

D2

D1

S1 S2
Store

P1
Product

P2

dice for
Date = ’D1’ and
Store in (’S1’, ’S2’) roll up for Date

slice for Date = ’D1’

pivot

300 500

30 50

S1 S2
Store

S3

P1
Product

P2

300 700 650

930 850 470

S1 S2
Store

S3

P1
Product

P2

300 500 50

30 50 400

S1

S2Store

S3

P1
Product

P2

300 30

500 50

50 400

300 500 50

30 50 400

200 600

900 800 70

Figure 2.10: Examples of typical OLAP operations on multidimensional data

Slice and dice
The operators slice and dice generate sub-cubes by selections, but they do not change the measures
values, that is they do not make summarizations:

– The slice operator selects a cross section that cuts across a cube with a selection on one dimension
(Figure 2.10).

– The dice operator selects a sub-cube with a selection on two or more dimensions (Figure 2.10).

Roll-up and Drill-down
The roll-up operator, also called drill-up, performs summarizations at different levels of details either by
dimension reduction or by climbing up dimension hierarchy.
Figure 2.10 shows the result of a roll-up operation by removing the date dimension, summarizing the the
quantity sold by product and by store.

The drill-down operator is the reverse of roll-up. It produces more detailed data from less detailed data.
Drill-down can be used by either stepping down a hierarchy for a dimension or introducing additional
dimensions.

Pivot
The pivot operator (also called rotate) performs a rotation of the data axes to provide an alternative
presentation of data (Figure 2.10).

2.3. Multidimensional Cube Model 31

2.3.2 The Extended Cube

Let us assume that each dimension is extended with an additional value “∗”. This value has the intuitive
meaning “all”, and it represents summarization along the dimension in which it appears. A cube can be
extended with new “borders” made of cells containing the value of aggregate functions (we consider here
only the SUM) as shown in Figure 2.11.

S1 S2
Store

S3 ∗

Da
te

P1

Product P2

∗

∗

D1

D2

300 500 50 850

30 50 400 480

330 550 450 1330

200 600 800

900 800 70 1770

900 1000 670 2570

300 700 650 1650

930 850 470 2250

1230 1550 1120 3900

Figure 2.11: Three-dimensional cube extended with cuboids

For example, using the notation Sales(Store, Product, Date, Qty) for a cube with dimensions Store, Product,
Date and a measure Qty, we can denote subcubes as follows:

– (’S1’, ’P1’, ’D1’) is the cell that contains 300, the sales for the product P1 on date D1 by the store S1;
– (’S1’, ∗, ’D1’) is the cell that contains 330, the sum of sales for all products on date D1 by the store S1;
– (’S1’, ∗, ∗) is the cell that contains 1 230, the sum of sales for all products over all time by the store S1;
– When a dimension is used as a coordinate instead of one of its values, the notation denotes a so

called cuboid. For example (Store, Product, ∗) is the cuboid “roll up for Date” in Figure 2.10, with two
dimensions with the cells that contain the sum of sales over all time by the dimensions Store and
Product (in SQL terms, the sales data are grouped by Store and Product, and the aggregate function
SUM(Qty) is computed).

In Figure 2.11, the border with the lightest shading represents aggregates in one dimension, darker shad-
ing for aggregates over two dimensions, and the darkest cuboid in the corner for summarization over all
three dimensions. In general the border represent only a small addition to the volume of the data cube
(the white cuboid).

The 3-dimensional extended cube is a generalization of a 2-dimensional extended cross-tabulation
(Table 2.1).

Table 2.1: Sales extended cross-tabulation

Store

Product S1 S2 S3 Total

P1 300 500 50 850
P2 30 50 400 480
Total 330 550 450 1330

2.3. Multidimensional Cube Model 32

To speed up data analysis, commercial data cube systems precompute all or some of the cuboids and
store them as materialized views of the data cube. The problem of selecting the cuboids to precompute
will be studied in a later chapter.

The total number of cuboids for a data cube with three dimensions is 2 3 = 8. The possible cuboids
can also be denoted without using the “∗” as follows: (Store, Product, Date), (Store, Product), (Store, Date),
(Product, Date), (Product), (Date), (Store), (). (Store, Product, Date) denotes the data cube, while () denotes
the total sum of all sales.

These cuboids can be represented as a lattice, also called the data warehouse lattice, as shown in
Figure 2.12. We say that the cuboid C1 is below the cuboid C2, written C1 � C2, if and only if C1 can
be computed from C2. The cuboids are named using the abbreviations P for Product, S for Store, D for
Date.

S1 S2
S

S3

D

P1
P

P2

D2

D1

S1 S2
S

S3

P1
P

P2

300 700 650

930 850 470

S1 S2
S

S3

1230 1550 1120

D1 D2
D

P1
P

P2

850 800

480 1770

D1 D2
D

1330 2570

3900

300 500 50

30 50 400

200 600

900 800 70

()

(P) (D)(S)

(S, P)

(S, P, D)

(P, D)(S, D)

Figure 2.12: Lattice of cuboids

In general the computation of the cuboid C1 from C2 depends on the aggregate function used, which can
be of one of the following types.

� Definition 2.13 Distributive Aggregate Functions
An aggregate function f on a multiset of values V is distributive if there is a local aggregate
function fl and a global aggregate function fg, such that for any k-partition {V1, . . . , Vk} of V we
have

f(V) = fg({fl(V1), . . . , fl(Vk)})

For example, the SQL functions SUM, MIN, MAX and COUNT are distributive aggregate functions:

– SUM(V) = SUM({SUM(V1), . . . , SUM(Vk)})
– MIN(V) = MIN({MIN(V1), . . . , MIN(Vk)})
– MAX(V) = MAX({MAX(V1), . . . , MAX(Vk)})
– COUNT(V) = SUM({COUNT(V1), . . . , COUNT(Vk)})

2.4. Summary 33

� Definition 2.14 Algebraic Aggregate Functions
An aggregate function is algebraic if it can be computed from a finite algebraic expression defined
over distributive functions.

For example, the functions average (AVG), variance (VAR), and standard deviation (STDEV) are algebraic
aggregate functions, which can be computed on V using the following distributive aggregate functions
on the multiset of a k-partition {V1, . . . , Vk}

– ni = COUNT(Vi)
– si = SUM(Vi)

– s2i = SUM(V 2
i), where V 2

i is the set of the squares of the various elements of Vi.

Let n = COUNT(V) = SUM({n1, . . . , nk}).
The functions AVG(V), VAR(V) and STDEV(V) are computed as follows:

– AVG(V) = SUM({s1, . . . , sk})/n

– VAR(V) =
SUM({s21, . . . , s2k})− (SUM({s1, . . . , sk}))2/n

n− 1
– STDEV(V) =

√
VAR(V)

� Definition 2.15 Holistic Aggregate Functions
An aggregate function is holistic if it can not be computed from other aggregate functions.

For example MEDIAN, MODE, RANK.

2.4 Summary

– A data warehouse conceptual model is the best support for discussing, verifying, and refining user
specifications since it achieves the optimal trade-off between expressivity and clarity.

– A multidimensional relational model is used to implement data warehouses. This model can adopt a
star schema, snowflake schema or a constellation schema. The core of a multidimensional model is a
fact table and a set of dimensional tables.

– The core of a multidimensional model is the data cube. An extended cube consists of a lattice of
cuboids, each corresponding to a different degree of summarization of data. Full or partial material-
ization refers to the pre-computation of all or some of the cuboids in the lattice. Commercial systems
use different strategies both about which cuboids to materialize, and how to store them.

2.4. Summary 34

Chapter 3

DATA WAREHOUSE DESIGN

The purpose of a data warehouse (DW) is not just to store data but rather to facilitate decision making.
Therefore, a data warehouse must be designed taking into account the different types of analyses that
are needed by the business users to make better decisions about key business processes worth of im-
provements. Since a data warehouse design process is complex, a methodology organized in phases is
presented, like the one that is used to design operational databases, to highlight the importance of con-
ceptual design and shows how to transform the conceptual design into the logical one using the relational
model.

3.1 Introduction

A data warehouse must be designed to provide the information needed to solve a business problem. If
the problem is solved there should be some economic gain in order to allow a cost benefit analysis for
the data warehousing project.

As happens for databases, it has become fairly standard to divide the DW design process into the
following four phases:

1. Requirements Analysis. The goal is to produce a description of the business processes, the typical
information analysis activities with which users are involved, and the measures and dimensions of
interest. Typically, requirements at this stage are documented rather informally.

2. Conceptual Design. The goal is to produce a formal description of the data to be analyzed in high-
level-term using a conceptual data model. We will use the Dimensional Fact Model, DFM, to describe
facts, dimensions, dimensional attributes and attribute hierarchies.

3. Logical Design. The goal is to transform the conceptual design into the logical structures used for
storing the DW in a relational DBMS.

4. Physical Design. The goal is to define the data structures needed for storing the database tables
created by the logical design. The main issues are what indexes and materialized views to define to
optimize the overall performance of the system.

Once the DW has been implemented, data must be extracted from the operational and external systems,
transformed into a usable format for the DW, and finally loaded into the DW in order to be usable for
query processing and analysis. These Extract, Load, Transform (ETL) processes have historically been
batch-oriented.

In general the data to load in the DW are processed with two important and complex kinds of opera-
tions:

1. Transform. When the data come from different sources, their formats are revised to align them by
eliminating syntactic and semantic differences.

(a) Syntactic transformation. The same data can have both attributes with different names, and the
names are not those to be used in the DW, and different types. For example, a code is defined in
some cases of a type string, and in others a type integer; a gender is defined as (M, F), (m, f), (0, 1)
or (male, female); a value is defined with different units of measurement, and so on.

3.2. Data Warehouse Design Approaches 36

(b) Semantic transformation. The data in source databases may have been used with a different mean-
ing. For example, sales can be daily or weekly.

2. Cleaning. The data are analyzed in order to eliminate errors of representation or to complete missing
information. For example, in the case of addresses the zip code can be wrong or the name of the town
can be written in different ways (Busto Arsizio also written as BustoArsizio or BArsizio)

The information generated during the design and implementation of a DW is organized and stored as
metadata using appropriate specialized tools or taking advantage of the capabilities of DW systems that
provide, as any DBMS, a catalog that contains information about the logical and physical organization
of the data managed. In the case of DW metadata are about other aspects of the data and, in short, can be
classified into the following main categories:

– Business metadata. Concern the meaning of the terms used to define the logical structure of data in
corporate terminology. This type of metadata is usually used by users to understand the nature of the
data available.

– Structural metadata. Concern the logical structure of facts and dimensions, types of attribute values,
hierarchies, dimensions and meaningful aggregations. This type of metadata is usually used by users
to understand what types of analysis can be performed on the data.

– Technical metadata. Are concerned with the physical data property, such as storage structures, data
sources, date of loading, transformations applied etc. This type of metadata is usually used by tech-
nicians for the maintenance and development of a DW.

– Operational metadata. Concerns the types of predefined analysis reports and what parameters should
be used.

– Design metadata. Concern the results of the DW design phases.

Loading metadata is only partially automated and has a cost: the time that the personnel involved in the
design and implementation of the DW must dedicate to the problem. Finally, note that metadata is useful
not only to gather information on the data, but also to be exchanged between different OLAP tools. For
this reason, proposals have been made to define standards like Common Warehouse Metamodel (CWM).

In the following, the focus will be on how to proceed in the conceptual and logical design phases of a
DW.

3.2 Data Warehouse Design Approaches

According to [Artz, 2005] and [Ballard et al., 2006], the approaches to DW design can be of the following
types (Figure 3.1):

What users want

What can be
delivered and
will be useful

What is available

User Requirements

Operational Data

Analysis
Driven

Data
Driven

Figure 3.1: Data warehouse design approaches

3.2. Data Warehouse Design Approaches 37

1. Data-driven. This approach was originally proposed by Inmon, one of the first authors on the subject
of data warehousing, which he describes as top-down, and whose supporters are referred to as “In-
monites”. The goal is to design first an enterprise DW based on the data available in the operational
information system, and then the data marts are created from the DW. This is done by analyzing a
conceptual model of data, if one is available, or the actual logical record layouts and selecting data
elements deemed to be of interest. This approach is the only possible when the demand for informa-
tion from a DW does not exist until the DW is actually available. An initial DW design on the basis of
the data available can help both users to discover new ways in which to use the available data, and the
designer to identify areas on which to focus data warehouse development efforts. The disadvantage of
this approach is that without user involvement there is the risk of producing a non interesting result.

2. Analysis-driven. This approach was originally proposed by Kimball, a well-known author on data
warehousing, which he describes as bottom-up, and whose supporters are referred to as “Kimballites”.
The goal is to design first the data marts based on the data analysis that the users want to perform, and
then the data marts are integrated to build the DW. The major advantage to this approach is that the
focus is on providing what is really needed, rather than what is available. In general, this approach
has a smaller scope than the data-driven approach. Therefore, it generally produces useful data marts
in a shorter time span. The disadvantage of this approach is the risk that some of the data that the
analysis needs are not available. Moreover, if a user is too tightly focused, it is possible to miss useful
data that is available in the operational information system.

Both the approaches can be useful in certain cases. In the following we will use a combination of the two
using the following design phases for each data mart of interest:

1. Requirements analysis
2. Initial analysis-driven data mart conceptual design
3. Candidate data-driven data mart conceptual design
4. Final data mart conceptual design
5. Data mart and DW logical design

3.2.1 Requirements Analysis

The requirements analysis phase is divided into two main sub-phases, characterized by the different lan-
guage used for the preparation of the documents they produce. The first sub-phase, Requirements gath-
ering, produces a natural language specification of requirements. The second sub-phase, Requirements
specification, produces a description of the requirements for data analysis outlining the salient features
to be modeled then with the conceptual design.

1. Requirements gathering

(a) Analysis of the problem domain for which the modeling will be done.
(b) Analysis of the business processes to select, with end-user interviews, those more interesting to

consider for designing the data warehouse.
(c) Business questions that end-users issue and try to answer in the course of their information anal-

ysis activities.
Examples of frequently encountered categories of business questions are:
– Existence checking analysis, such as “A given product has been sold to a particular customer.”
– Item comparison analysis, such as “Compare the value of purchases of two customers over the

last six months,” or “Compare the number of items sold for a given product category, by store,
and by week.”

– Trend analysis, such as “The growth in item sales for a given set of products, over the last 12
months.”

– Queries to analyze ratios, rankings, and clusters, such as “Rank our best customers in terms
of dollar sales over the last year.”

3.2. Data Warehouse Design Approaches 38

– Statistical analysis, such as “The average item sales by product category, by sales region.”

Note that the business questions must usually be “interpreted” in order to express them in a form
more useful for designing the data warehouse. For example, a business question a manager of a
company wish to ask of their data might be: “Why are our sales not meeting our targets”. The
business question might be interpreted in a more useful form as ”For the current year, the cumu-
lative quantity sold and targets, by product”. That is, an interpreted business question should be
expressed with the types of reports to be produced, or phrases that reveal the following informa-
tion:

– The constraints on data to analyze.
– The requested dimensional attributes and the metrics (aggregation operation) to compute.
– The coordinates (dimensions) against which the fact must be analyzed.
– The result sorting criteria and if metrics’ partial value are needed.

When business questions are expressed by means of phrases, the use of the following form is
suggested: “For a data subset to use, the metrics to compute, by dimension, . . . , by dimension.
How the result should be presented”. For example, “For the year 2010 in Italy, the total of sale
revenue, by region, by month, by customer name. The result must be sorted by region, month, and
customer name, and must include partial totals for all regions.”

It is important also to check that the information analysis requirements need data that are cur-
rently available or can be obtained as external data that exist outside the enterprise. If there are
multiple data sources, the analysis is complicated by the need to reconcile the likely differences
in representation of information. In the following we will not consider this aspect.

2. Requirements Specification. The business questions are specified using a set of worksheets with the
following structure:

Business Process Requirements

Process
N Business questions Dimensions Measures Metrics

Each business question is analyzed to identify the fact measures, the preliminary dimensions, and
the metrics to be computed.

Fact Description

Fact
Description Preliminary dimensions Preliminary measures

The meaning of the fact is described, together with its grain and type (transaction, periodic, or
accumulating), and the preliminary measures and dimensions.

Dimensions

Dimensions
Name Description Granularity

The meaning of each dimension is described, together with its name, a description, and the grain.

3.2. Data Warehouse Design Approaches 39

Dimensional Attributes

Dimension
Attribute Description

Of all dimensions the attributes and their description are listed. Dimensional attributes must be
chosen carefully to express the analysis in a natural way and display results in a comprehensible
way. If there are attributes with values that are codes, providing the description of the code is also
suggested. It is also advisable not to use the same names for attributes of different dimensions that
have different meaning.

Dimensional Hierarchies

Dimensional Hierarchies
Dimension Hierarchy decription Hierarchy Type

It describes the dimensional hierarchies for each dimension, and their type (balanced, ragged,
recursive).

Dimensional Attributes Changes

Changing Dimensions
Name Changing Attribute Treatment of changes

It is important to understand how the business wants to deal with the dimension attributes that
can change over time. Consequently, for each of them, besides the name, the type of strategy is
specified to deal with them in the logical design phase and data loading.

For example, suppose that the dimension Customer of facts Order contains the attribute Residence,
with a value that can change over time, and that there are several sales involving a customer from
Lucca, which to a certain date changes residence to Pisa. How can we carry out sales analysis to
account for this change? What should the result be of analysis such as “ How many sales are made
in Pisa?”.

The strategy to be specified depends on the objectives of the analysis, and for this reason it should
be documented in the requirements specification. We consider four options, of which the first three
are considered for slowly changing dimensions:

Type 1 (overwriting the history) If a dimensional attribute changes its value, only the latest
value is required to be held in the data mart. This means that there is no need to preserve
the previous value.
For example, if a customer changes address, the new one replaces the present value of the
dimension Customer. It is the easiest solution, but the history of customer addresses is lost. For
example, if a customer at a certain date changes their address from Pisa to Lucca, all sales
concerning him before and after this date are considered made in Lucca, and this changes the
outcome of analyses such as “How many sales are made in Pisa?”

Type 2 (preserving the history) If a dimensional attribute changes its value, both the old and the
new value are required to be held in the data mart, but the structure of the dimension must not
be changed. It is the solution commonly used.

3.2. Data Warehouse Design Approaches 40

Type 3 (preserving one or more versions of history) If a dimensional attribute changes its value,
the structure of the dimension is extended with additional attributes to keep the tracking his-
tory with both old and new values. Moreover, we also add another attribute EffectiveDate for
the date of the change. This solution is rather quirky and it is rarely used. We will not consider
it further.

Type 4 (fast changing) The dimensional attributes change frequently, and must not be treated
with one of the previous solutions.

Measures

Fact measures
Measure Description Aggregability Calculated

It describes each measure of the fact identified from the requirements, how it is calculated from
other measures, and the aggregate functions that are applicable to the measure when the data are
grouped by dimensions.

Descriptive attributes of the facts

Descriptive attributes
Attribute Description

It contains each descriptive attribute of the facts, with a description of what they represent.

Summary of Dimensions and Measures

Facts Dimensions
Dimension Fact1 . . . Factn

Facts Measures
Measure Fact1 . . . Factn

If the requirements concern different facts, the worksheets specify in which facts the selected
dimensions and measures are used. The worksheet about dimensions, called the data warehouse
bus architecture, is useful to identify which dimensions are used by multiple data marts, and
therefore they must have a unique interpretation and representation (conformed dimensions) to be
then shared in the DW. If the dimensions must be kept different, they must be renamed.

3.2.2 Initial Analysis-Driven Data Mart Conceptual Design

An initial data mart conceptual design is defined from the analysis that the users perform (the design
from what the users want), without any claim to completeness but useful as a formal description of
requirements. In the conceptual design the dimensional hierarchies are modelled together with their type
(balanced, incomplete, recursive), degenerate dimensions and descriptive attributes of the facts.

3.2. Data Warehouse Design Approaches 41

3.2.3 Candidate Data-Driven Data Mart Conceptual Design

A method is described for developing a candidate data mart conceptual design from the operational
database relational schema (the design from what is available). This approach to data mart design ensures
that its schema reflects the underlying structure of the data available. The following steps are based on
the proposal presented in [Moody and Kortink, 2000]:

1. Operational data analysis. In this step, the relational database schema is analyzed to perform two
actions:

(a) Standardize terminology and units of numerical quantities that have an identical time reference.
(b) Delete tables, and attributes, considered not relevant to the analysis of the data. For example,

information such as the tax code and telephone number are usually not relevant for the analysis of
the data.

2. Tables classification. In this step, the relational database tables are classified in three categories to
identify the possible facts, measures, dimensions and hierarchies between dimensional attributes.

(a) Transaction Entities. These are tables with records that represent events of interest for the busi-
ness process to be analyzed (orders, insurance claims, salary payments, sales, hotel booking, etc.).
Transaction entities have two fundamental characteristics:

– Describe events that occur at a point in time.
– Contains measurements or quantities that may be summarized (e.g. monetary value, quantity,

weight, volume).

It is very important to correctly identify the pertinent transaction entities because they are the
natural candidates to be considered later for the definition of facts that decision makers want to
understand and analyze. However, it must be kept in mind that not all transaction entities will be
of interest for decision support, so they must be analyzed carefully with users to identify which of
them are important.

(b) Component Entities. These are tables directly related to a transaction entity via a one-to-many
relationship (Figure 3.2). These entities define the details or components for each transaction
event, and so are useful to answer the who, what, when, where, why and how of a business event.
Component entities are the basis for defining dimensions in the data mart conceptual design.

An important component entity of any transaction entity should be the one that represents the
time: the historical analysis, in fact, play a key role in all the DW, but usually in the operational
database time is not represented with a table but with an attribute of type Date and this must be
taken into account when defining the data mart design.

Note that the definition of component entity does not allow us to isolate multivalued dimensions,
resulting instead from tables directly related to a transaction entity via a many-to-one relationship.
In general, this type of table should be considered in the choice of a component entity, as will be
shown in a following example.

(c) Classification Entities. These are tables related to a component entity by a chain of one-to-
many relationships (Figure 3.2). These entities usually represent hierarchies embedded in the data
schema. Their interesting attributes are collapsed into component entities to define then in the data
mart design the dimensional attributes and hierarchies.

3.2. Data Warehouse Design Approaches 42

Transaction
Entity

Component
Entity1

Classification
Entity1

Classification
Entity2

Component
Entity3

Component
Entity2

Figure 3.2: Tables classification

In some cases, entities may fit into multiple categories. We therefore define a precedence hierarchy
for resolving such ambiguities:

(a) Transaction entity (highest precedence).
(b) Classification entity.
(c) Component entity (lowest precedence).

For example, if an entity can be classified as either a classification entity or a component entity, it
should be classified as a classification entity. In practice, some entities will not fit into any of these
categories. Such entities do not fit the hierarchical structure of a dimensional model, and cannot be
included in the conceptual design.

Example 3.1
Figure 3.3 shows an operational database schema for an orders sales application, assuming that a
row of an order may have dealt with more than one shipment.

– Transaction entity: it is interesting to collapse Order into OrderLine, with the OrderLine granularity
to define the data mart facts. Other possibles transaction entities might be Invoice, Product or
Shipment, but they are not considered of interest for decision support.

– Component entity: Customer, Invoice and Product.
– Classification entity: ProductCategory is collapsed into Product.

The table Shipment does not satisfy the condition to be considered as a component entity of Order-
Line because of the many-to-one relationship, but it might be considered to define a multivalued
dimension.

OrderLine

OrderLinePK
OrderFK
ProductFK
InvoiceFK
Quantity

Product
ProductPK
ProductCategoryFK
Name
UnitPrice
QtyAvailable
ReorderLevel

Shipment

ShipmentPK
OrderLineFK
IfComplete
Quantity

Invoice
InvoicePK
NInvoice �UK�
Date
InvoiceAmt

ProductCategory

CategoryPK
Name
Description

Order

OrderPK
NOrder �UK�
CustomerFK
Date

Customer

CustomerPK
Phone �UK�
Name
Address

Figure 3.3: A database for order management

3.2. Data Warehouse Design Approaches 43

3. Candidate data mart conceptual design.
The Candidate data mart conceptual designs are defined in the following way:

– For each transaction entity, a data mart fact is defined.
– A dimension is formed for each component entity, by collapsing hierarchically related classifi-

cation entities into it. The dimensional attributes are analyzed to decide possible hierarchies. For
example, an attribute Date of a transaction entity is usually substituted with attributes Day, Month,
Year, and a hierarchy is defined among them; an attribute Address may be replaced by City, and
Region, and a hierarchy is defined among them.

– Where hierarchical relationships exist between transaction entities, the child entity inherits all
dimensions (and key attributes) from the parent entity. This provides the ability to “drill down”
between transaction levels.

3.2.4 Final Data Mart Conceptual Design

From a comparison of the initial and candidate conceptual designs the final data marts are defined (the
design of what can be delivered and will be useful), which in general will be an extension of the common
parts.

3.2.5 Data Mart and Data Warehouse Logical Design

Assuming that the multi-dimensional model is implemented with a ROLAP system, firstly each final
conceptual data mart design is translated in a relational schema, deciding whether to make a star or
snowflake schema, and then integrating the various data marts schemas in a single DW schema, consid-
ering the following possibilities:

– Standardize and share the fact tables with the same dimensions.
– Standardize and share common dimension tables.

In the definition of the relational tables of the data mart logical schema, the following problems will be
considered, among others that may arise [Kimball and Ross, 2002b].

Primary keys of dimension tables
The primary key of each dimension table should be an attribute with numerical values automatically
generated (artificial or surrogate key) in addition to any primary key used in the original data, if it is
considered relevant to also keep this information in order to determine from which original data it comes
from, but which is not necessarily a key for the dimension table.

For the Date dimension table with the granularity of the day, usually present in every data mart, it is useful
not to use a surrogate key for the primary key, but an integer representing a day in the form YYYYMMDD.
With a similar format it is useful to represent attribute values in the dimensional hierarchy Month →
Quarter. Usually there are also other attributes useful to show in reports, such as DayName, MonthName,
Week Number, etc.

Foreign keys in the fact table
When modeling the facts, foreign keys for dimension tables have the values of surrogate primary keys,
and it is useful to assume that foreign keys are always defined, or that their values are not equal to Null.
To deal with cases in which for a fact record the dimension value may be unknown, a common solution
is to add into the dimension table a special record with an attribute, different from the primary key, with
a default value such as “Not Found”, and then the foreign key of fact record without the dimension data
points to the row “Not Found”.

As in the case of dimension tables, the fact table too may have descriptive attributes, such as the
primary key used in the operational database to know the source of the fact.

3.2. Data Warehouse Design Approaches 44

Changing dimensions
For a slowly changing dimension, we adopt the following solutions on the basis of the strategy specified
in the requirements:

Type 1 (overwriting the history) The new attribute value replaces the old value in the record of the
dimension table.

Type 2 (preserving the history) A new record is inserted in the dimension table, with a different sur-
rogate key. For example, if a customer changes residence, a new record is inserted in the dimension
Customer, as if there were two customers with different surrogate keys. The orders of the past relate
to the customer with the old residence, the orders of the future will refer to the customer with the new
residence.

This solution is an example that motivates the use of surrogate primary keys, but creates a problem
for the analysis that requires counting the number of different customers who have made a certain
order: if the count in the analysis is done with a COUNT(DISTINCT CustomerFK), customers who have
changed address would be counted several times and, therefore, the result would not be correct.

The problem is solved by adding an attribute to the dimension table with a value appropriate to es-
tablish that records with different surrogate keys relate to the same customer who changed residence.
Possible solutions are (Figure 3.4): (a) use a customer “natural” key different from the surrogate, like
the Social Security number (SSN), (b) use the first surrogate key that was assigned to the customer
and, (c) to avoid having to do some frequent analysis with junctions, this information is stored in the
fact table as a degenerate dimension.

Order

CustomerFK
· · ·

Customer
CustomerPK
SSN �UK�
· · ·

(a) A natural key in the dimension table

Order

CustomerFK
· · ·

Customer
CustomerPK
InitialCustomerPK
· · ·

(b) First surrogate key in the dimension table

Order

CustomerFK
InitialCustomerPK �DD�

Customer
CustomerPK
· · ·
· · ·

(c) First surrogate key in the fact table

Figure 3.4: Slowly changing dimension

Type 3 (preserving one or more versions of history) In the dimension two attributes are added, one
for the new value and the other for the modification date. For example, if a customer changes resi-
dence, the Customer dimension structure three attributes are used for the residence: Residence, NewRes-
idence, ChangeDate. If the residence changes again, a new record may be inserted as the solution of the
Type 2. Other solutions are possible on the basis of expected analysis, but they all make the solution
and the queries for the analysis more complex, and their use should be considered carefully.1

1. For examples see http://en.wikipedia.org/wiki/Slowly changing dimension

3.2. Data Warehouse Design Approaches 45

If a dimension changes frequently due to numerical attributes, an alternative to consider to the previous
ones is the following:

Type 4 (fast changing dimensions) A dimension is considered to be a fast changing dimension if one
or more of its attributes changes frequently and in many rows, such as age or income. A fast chang-
ing dimension can grow very large if we use the Type-2 approach to track numerous changes. Fast
changing dimensions are also called rapidly changing dimensions.
An appropriate approach for handling very fast changing dimensions is to break off the fast changing
attributes into one or more separate dimensions, called mini-dimensions. For example, the dimension
is stored in two tables, one with the attributes that do not change (or change slowly) and the other
with only those attributes that change frequently, and defined by range of values (e.g. with strings
like “From-To”), agreed with users based on the type of analysis to be done. The fact table would
then have two foreign keys: one for the primary dimension table and another for the fast changing
attributes.

Shared Hierarchies
If there is a shared hierarchy, its attributes are stored in a separate table.

Recursive Hierarchies
An example of a recursive hierarchy is presented in Figure 3.5: in the dimension Agent of Order there is
an attribute Supervisor to represent a recursive relationship among agents (Figure 3.5).

Order
Quantity
ExtendedPrice
Discount
Revenue

DateAgent
Name

City

Supervisor

Store

Product

Figure 3.5: A dimension with a recursive hierarchy

Let us consider two examples of relational schemas to represent this conceptual model (without consid-
ering the dimensions Store, Date and Product).

Type 1 A relational schema with a recursive hierarchy.

Order
Quantity
ExtendedPrice
Discount
Revenue
AgentFK

Agent

AgentPK
Name
City
SupervisorFK

|

Figure 3.6: A relational schema with a recursive hierarchy

For example, suppose that we have the following agents hierarchy:

3.2. Data Warehouse Design Approaches 46

Ag1

Ag2 Ag3

Ag4 Ag5 Ag6

Ag7

Figure 3.7: A hierarchy for an organization chart

Then a set of records for the table Agent could be:

Agent
AgentPK Name City SupervisorFK

1 Ag1 Pisa NULL
2 Ag2 Pisa 1
3 Ag3 Firenze 1
4 Ag4 Pisa 2
5 Ag5 Pisa 2
6 Ag6 Firenze 3
7 Ag7 Pisa 5

Let’s see some examples of queries, assuming that the table Order has the following data:

Order
Quantity Extended Price Discount Revenue AgentFK

10 10 0 100 1
10 20 0 200 2
10 30 0 300 3
10 40 0 400 4
10 50 0 500 5
10 60 0 600 6
10 70 0 700 7

The queries that exploit the hierarchy can be defined as follows by using the so-called Common Table
Expression (CTE), using the WITH RECURSIVE syntax.

Q1. This query finds the total order revenue placed by the agent Ag2, including subordinates (Ag4, Ag5,
Ag7), for which he is responsible at every level:

WITH RECURSIVE Ag2andSubordinates AS
(SELECT AgentPK

FROM Agent
WHERE Name = ’Ag2’

UNION
SELECT A.AgentPK
FROM Agent A JOIN Ag2andSubordinates S ON A.SupervisorFK = S.AgentPK

)
SELECT ’Ag2’ AS Name, SUM(Revenue)
FROM Ag2andSubordinates S JOIN Order O ON S.AgentPK = O.AgentFK;

Result
Name SUM(Revenue)

Ag2 1800

3.2. Data Warehouse Design Approaches 47

Note that the first part of the query, with UNION, returns the primary key of the agent Ag2 and all its
subordinates, while the second part sum the revenue for all the four agents.

Q2. This query finds the total order revenue for Ag6 and all its supervisors (Ag3 and Ag1):

WITH RECURSIVE Ag6andSupervisors AS
(SELECT AgentPK, SupervisorFK

FROM Agent
WHERE Name = ‘Ag6’

UNION
SELECT A.AgentPK, A.SupervisorFK
FROM Agent A JOIN Ag6andSupervisors S ON A.AgentPK = S.SupervisorFK

)
SELECT ‘Ag6’ AS Name, SUM(Revenue)
FROM Ag6andSupervisors S JOIN Order O ON S.AgentPK = O.AgentFK;

Result
Name SUM(Revenue)

Ag6 1000

Q3. This query finds the names of the agents that do not have subordinates:

SELECT A1.Name AS Name
FROM Agent A1
WHERE NOT EXISTS

(SELECT *
FROM Agent A2
WHERE A2.Supervisor = A1.AgentPK);

Result
Name

Ag4
Ag6
Ag7

Q4. This query finds the names of the agents that do not have supervisors:

SELECT Name
FROM Agent
WHERE Supervisor IS NULL;

Result
Name

Ag1

Non recursive solution
It is interesting to note that the same problem, instead of using a recursive table, can be resolved by
eliminating the SupervisorFK in the Agent table and introducing an auxiliary table that explicitly lists all
the hierarchy links between the agents. In this case, the relational schema is shown in Fig. 3.8.

The auxiliary table ForTheHierarchy contains one row for each pair of (Agent, Subordinate), as well as a
row for each agent with itself, and has the following structure:

3.2. Data Warehouse Design Approaches 48

Order
Quantity
ExtendedPrice
Discount
Revenue
AgentFK

Agent

AgentPK
Name
City

ForTheHierarchy

AgentFK �PK�
SubordinateFK �PK�
SubordinationLevel

Figure 3.8: A non recursive solution to represent a recursive hierarchy

– AgentFK, a foreign key for the table Agent that represents the supervisor agent.
– SubordinateFK, a foreign key for the table Agent that represents a subordinate agent (at any level) or

itself (AgentFK = SubordinateFK).
– SubordinationLevel with a value of the number of arcs of the path from the agent to the subordinate.
– (AgentFK, SubordinateFK) is the primary key.

For example, the records of the table ForTheHierarchy, for the agents hierarchy of Figure 3.7, are the
following:

ForTheHierarchy
AgentFK SubordinateFK SubordinationLevel

1 1 0
1 2 1
1 3 1
1 4 2
1 5 2
1 6 2
1 7 3
2 2 0
2 4 1
2 5 1
2 7 2
3 3 0
3 6 1
4 4 0
5 5 0
5 7 1
6 6 0
7 7 0

We show now how to perform the previous four queries, producing exactly the same results.

Q1. This query finds the total order revenue placed by the agent Ag2, including subordinates (Ag4, Ag5,
Ag7), for which he is responsible at every level:

SELECT A.Name, SUM(Revenue)
FROM Order O JOIN ForTheHierarchy H ON O.AgentFK = H.SubordinateFK

JOIN Agent A ON H.AgentFK = A.AgentPK
WHERE A.Name = ‘Ag2’

GROUP BY A.Name;

Q2. This query finds the total order revenue for Ag6 and all its supervisors (Ag3 and Ag1):

SELECT A.Name, SUM(Revenue)
FROM Order O JOIN ForTheHierarchy H ON O.AgentFK = H.AgentFK

JOIN Agent A ON H.SubordinateFK = A.AgentPK
WHERE A.Name = ‘Ag6’

GROUP BY A.Name;

3.2. Data Warehouse Design Approaches 49

Q3. This query finds the names of the agents that do not have subordinates:

SELECT A.Name
FROM Agents A
WHERE A.AgentPK IN

(SELECT AgentFK
FROM ForTheHierarchy H1
GROUP BY AgentFK
HAVING COUNT(*) =1);

Q4. This query finds the names of the agents that do not have supervisors:

SELECT A.Name
FROM Agents A
WHERE A.AgentPK IN

(SELECT SubordinateFK
FROM ForTheHierarchy H1
GROUP BY SubordinateFK
HAVING COUNT(*) =1);

With the non recursive solution, it is easy to perform a query with a data hierarchy restriction to a certain
level (SubordinationLevel < 2), but it has the following disadvantages: the auxiliary table ForTheHierarchy
data is complex to generate and update.

For instance, if in the recursive solution we must insert two other agents (Ag8 supervisioned by Ag7,
and Ag9 supervisioned by Ag8), this would require only the insertion of two rows in the Agent table for
the recursive solution, while in the non recursive solution we have to insert, in addition to the two new
rows in the table Agent, other 11 rows in the table ForTheHierarchy, producing the following table (the
updates are in strong black).

ForTheHierarchy
AgentFK SubordinateFK SubordinationLevel

1 1 0
1 2 1
1 3 1
1 4 2
1 5 2
1 6 2
1 7 3
1 8 4
1 9 5
2 2 0
2 4 1
2 5 1
2 7 2
2 8 3
2 9 4
3 3 0
3 6 1
4 4 0
5 5 0
5 7 1
5 8 2
5 9 3
6 6 0
7 7 0
7 8 1
7 9 2
8 8 0
8 9 1
9 9 0

3.2. Data Warehouse Design Approaches 50

Multivalued Dimensions
If there is a multivalued dimension, for example, an order item has been promoted by several agents
(Figure 3.9), one of the following relational representations might be used (other solutions are presented
in [Song et al., 2001]):

Order
Quantity
ExtendedPrice
Discount
Revenue

DateAgent
Name

City

Store

Product

Figure 3.9: A multivalued dimension

Order
· · ·
OrderPK
· · ·

AgentOrder

AgentFK �PK�
OrderFK �PK�

Agent

AgentPK
Name
City

(a) A traditional representation of a many-to-many relationship

Order
· · ·
Group
· · ·

GroupMembers

Group �PK�
AgentFK �PK�
Allocation

Agent

AgentPK
Name
City

(b) Another type of an auxiliary table

Order
· · ·
GroupFK
· · ·

GroupOfAgents
· · ·
GroupPK
· · ·

Agent

AgentPK
Name
City

AgentGroup

GrouptFK �PK�
AgentFK �PK�
Allocation

(c) A bridge table

Order
· · ·
AgentFK
Group �DD�

Agent

AgentPK
Name
City

(d) New fact granularity

Figure 3.10: An auxiliary table to associate any number of agents with an order

1. The many-to-many relationship between the fact table and the dimension table is represented with a
traditional auxiliary table (Figure 3.10a), called even in this case bridge table. This solution, however,
violates the properties of a scheme to be a star and may not be accepted by some BI systems (e.g.
SQL Server Analysis Services).

2. The many-to-many relationship between the fact table and the dimension table is represented with
another type of an auxiliary table GroupMembers (Figure 3.10b), with attributes

3.2. Data Warehouse Design Approaches 51

– Group, the code of a group of agents,
– AgentFK, the foreign key for the table Agent, and
– Allocation with a value between 0 and 1, which represents the contribution to the order promotion

credited to each group member, such that the sum of all the allocation factors belonging to a single
group is exactly 1.

The table GroupMembers has, for each group, as many elements as are the agents of the group. An
agent may be present in several groups. This solution may not be accepted by some BI systems (e.g.
SQL Server Analysis Services).
In the fact table Order there is the attribute Group which indicates the group of agents of the table
GroupMembers involved in a particular order. The relationship between the fact table and the Group-
Members table in Figure 3.10b is many-to-many. This is not a mistake: if the same group of agents
collaborate again for another order, the same group number will be used.
To generate the report to find out the total order revenue by agent name, to avoid a wrong SQL query,
we must distinguish whether we are looking for the total order revenue contribution of a group
member (weighted analysis), or if we are looking for the total order revenue of the groups to which
an agent belongs (impact analysis). In the first case the value of the attribute Allocation must be used
as follows:
SELECT A.AgentPK, A.Name, SUM(Revenue * GM.Allocation)
FROM Order O, GroupMembers GM, Agent A
WHERE O.Group = GM.Group AND GM.AgentFK = A.AgentPK
GROUP BY A.AgentPK, A.Name;

while in the second case the attribute Allocation is not used, and in general a different result is found.
3. Two auxiliary tables are used (Figure 3.10c): GroupOfAgents, which contains one row for each group of

agents, with the primary key Group, and AgentGroup to model the many-to-many relationship between
the tables Agent and GroupsOfAgents.
In the fact table Order there is the foreign key GroupFK for the table GroupOfAgents which indicates the
group of agents involved in a particular order. This solution is usually accepted by BI systems (e.g.
SQL Server Analysis Services).

4. Another solution is to change the fact granularity: instead of using a record for each order item,
a record is used for each agent who has promoted the order item, with the weighted values of the
measures, and the attribute Group as a degenerate dimension to recognize groups of records that relate
to the same order item (Figure 3.10d). This solution increases the memory occupied by the fact table
by a factor equal to the average number of agents that promote an order, while the one with a bridge
table in general uses less memory.

Multivalued Dimensional Attributes
If a dimension has multivalued attributes (Figure 3.11), the problem is solved as in the case of the multi-
valued dimension, by treating the dimensional table as the fact table in the previous case, and preserving
the relationship between the fact table and dimension table. Figure 3.12 shows only the first solution.

Order
Quantity
ExtendedPrice
Discount
Revenue

DateAgent
City

Name

CustomerType

Store

Product

Figure 3.11: A dimension with a multivalued attribute

3.3. A Case Study 52

Order
· · ·
AgentFK
· · ·

Agent

AgentPK
Name
City

CustomerType

TypePK
Description

AgentCustomerType

AgentFK �PK�
TypeFK �PK�

Figure 3.12: An auxiliary table to deal with a multivalued dimensional attribute

3.3 A Case Study

A case study is presented to show how to apply the methodology to design a DW. Do not be misled by the
simplicity of the example. In practice the procedure is complicated by the difficulties of the requirements
analysis phase for the quantities of the details and the many exceptions that usually occur. Aspects that
are neglected in the example.

3.3.1 Requirements Analysis
1. Requirements gathering

(a) Analysis of the nature and purpose of the company. CelPhone is a company that deals with the
production and sale of cellular phones with its own sales outlets.
To meet growing market demand the company has expanded by opening new plants and sales
outlets. The company growth has started to level off, and management is refocusing on the per-
formance of the organization using a DW to facilitate the analysis of the inventory and revenue
from product sales. It has created a team consisting of one data analyst, one process analyst, one
manufacturing plant manager, and a sales manager for the project.

(b) Business processes analysis. The products are available in different models and are constructed
from a set of common components. Each model may be eligible for discounting, and in this case
the salesperson may discount the price if the customer buys a large quantity of the model or a
combination of models. The discount must be approved by the manager of the sales outlet.
The plant keeps an inventory of the product models. When the quantity on hand for a model falls
below a predetermined level, a work order is created to cause more of the model to be manufac-
tured.
A customer places orders from a sales outlet. Unless a discount is negotiated, the suggested retail
price is charged. Each sales outlet, on average, creates 500 orders per day, seven days per week.
Each order consists of an average of 10 product models.

(c) Collection of business requirements for data analysis (business questions) and verification that
the data needed are available. Let us assume that the expert in DW, after an analysis of the life
cycle of a product, inventory and sales processes, organization structure, the meaning of cost,
discount and revenue, has interviewed executives interested in the data analysis, and has collected
the following set of typical online data analysis of users interest:

Inventory process
1 Average quantity on hand and reorder level for each model by month,

by model identifier and description, by manufacturing plant, name and
region.

2 Models that have reached the reorder level at least once in all manufac-
turing plants of a certain region.

3.3. A Case Study 53

Sales process
3 The total cost and revenue by model sold, by month, by manufacturing

plant, name and region.

4 Percentage of models eligible for discounting, and of those, what percent-
age are actually discounted when sold, by sales outlet, for all sales this
week (or this month, or this quarter).

5 The top five models sold last month by total revenue, or by quantity sold,
or by total cost.

6 Total cost and revenue by model Id and description, by month of the last
year, by sales outlet and region.

7 Number of customers who last month bought the 5 models that have pro-
duced the highest margin, by the region of the sales outlet.

The operational database, which contains all the necessary information for the analysis, is shown
in Figure 3.13.

City

CityPK
RegionFK
Name

Manufactory

ManufactoryPK
CityFK
Name
Phone
Address
ManagerName

Region

RegionPK
Name

Model
ModelID
ProductFK
WholeSalePrice
RetailPrice
Cost
Discount

Product
ProductPK
Description
Picture

Inventory

ManufactoryFK
ModelID
QuantityOnHand
ReorderLevel
DateInventory

ComponentModel

ComponentFK
ModelID
NoComponents

Component

ComponentPK
Description
Cost

OrderLine
ManufactoryFK
ModelID
OrderID
OrderLineNo
UnitSellingPrice
QuantityOrdered
Discount

SalesOutlet

SalesOutletPK
CityFK
Address
Phone
MAnagerName
NoOfCashes

Customer

CustomerPK
CityFK
Name
Address

Order

OrderID
SalesOutletFK
CustomerFK
Date
ShipLocation

Figure 3.13: The operational database

2. Requirements specification
Each business question is analyzed to identify the preliminary dimensions (in parentheses, the at-
tributes) and measures of interest (for brevity, the metrics are not described), and then the grain of the
fact.

3.3. A Case Study 54

Inventory process
N Business questions Dimensions Measures

1 Average quantity on hand and re-
order level for each model by
month, by model identifier and de-
scription, by manufacturing plant,
name and region.

Model
(ModelID Description),
Manufactory
(Name, Region),
Date(Month)

QuantityOnHand,
ReorderLevel

2 Models that have reached the re-
order level at least once in all man-
ufacturing plants of a certain re-
gion.

Model,
Date(Week),
Manufacturing(Region)

ReorderLevel

With regard to the granularity of the facts, for the Inventory the data of interest are
those about each product at the end of the month.

Inventory fact
Description Preliminary Dimensions Preliminary measures

A fact is about each product Model, Manufactory, QuantityOnHand,
state at the end of the month. Date ReorderLevel

The description of dimensions, attributes, and fact Inventory measures follow.
Dimensions

Name Description Granularity

Date . . . A month
Model . . . A model
Manufactory . . . A manufacturing plant

Date
Attribute Description

Month . . .
Year . . .

Model
Attribute Description

ModelID . . .
Description . . .

Manufactory
Attribute Description

Name . . .
Region . . .

Measures
Measure Description Aggregability Calculated

QuantityOnHand . . . Semi additive No
across Date

ReorderLevel . . . Non additive No

3.3. A Case Study 55

Sales process
N Business questions Dimensions Measures

3 The total cost and revenue by
model sold, by month, by manufac-
turing plant, name and region

Model
(ModelID, Description),
Date(Month),
Manufactory
(Name, Region)

ExtendedCost,
Revenue

4 Percentage of models eligible
for discounting, and of those,
what percentage are actually
discounted when sold, by sales
outlet, for all sales this week (or
this month, or this quarter)

Model(Discount),
SalesOutlet,
Date
(Week, Month, Quar-
ter)

ExtendedPrice,
Discount

5 The top five models sold last
month by total revenue, or by
quantity sold, or by total cost.

Model, Date(Month) ExtendedCost,
QuantityOrderd,
Revenue

6 Total cost and revenue by model
Id and description, by month of the
last year, by sales outlet and region

Model
(ModelID, Description),
SalesOutlet(Region),
Date(Month, Year)

ExtendedCost,
Revenue

7 Number of customers who last
month bought the 5 models that
have produced the highest margin,
by the region of the sales outlet.

Customer, Model,
SalesOutlet(Region),
Date(Month)

Margin

With regard to the granularity of the facts, for the Sales the data of interest are
those about each single line item of an order.

Sales fact
Description Preliminary Dimensions Preliminary Measures

A fact is about a product Model, Manufactory, QuantityOrdered,
sold Customer, SalesOutlet, ExtendedPrice, Revenue

Date ExtendedCost, Discount

The description of dimensions, attributes, and fact Sales measures follow.
Dimensions

Name Description Grain

Model . . . A model
Date . . . A day
Manufactory . . . A plant
Customer . . . A customer
SalesOutlet . . . A sales outlet

Model
Attribute Description

ModelID . . .
Description . . .
Discount . . .

Date
Attribute Description

Day . . .
Month . . .
Quarter . . .
Year . . .
Week . . .

Manufactory
Attribute Description

Name . . .
Region . . .

Customer
Attribute Description

SalesOutlet
Attribute Description

Region . . .

Dimensional Hierarchies
Dimension Description Hierarchy type

Date Day→ Month→ Quarter→ Year Balanced

3.3. A Case Study 56

Measures
Measure Description Aggregability Calculated

QuantityOrdered (Q) . . . Additive No
ExtendedPrice (P) UnitPrice ×Q Additive Yes
ExtendedCost (C) UnitCost ×Q Additive Yes
Discount (D) ExtendedPrice reduction Additive No
Revenue (R) P −D Additive Yes
Margin R− C Additive Yes

Before moving on to other phases of design, dimensions and measures of the facts are represented
in the following tabular form highlighting what measures and dimensions are common to different
facts and therefore need to be conformed or renamed. The dimensions Date and Model have different
attributes in the two facts, and it is assumed that those of the fact Sales are used.

Fact dimensions
Dimension Inventory Sales

SalesOutlet X
Model X X
Manufactory X X
Customer X
Date X X

Fact measures
Measure Inventory Sales

QuantityOnHand X
ReorderLevel X
ExtendedPrice X
ExtendedCost X
Revenue X
Margin X
QuantityOrderd X
Discount X

3.3.2 Initial Analysis-driven Data Mart Conceptual Design

The data analysis requirements show that the facts are about Inventory and Sales. The attributes used
in the data analysis suggest that the two possible initial conceptual data marts are those shown in Fig-
ure 3.14.

3.3.3 Candidate Source-driven Data Mart Conceptual Design

1. Operational data analysis. Based on the data analysis requirements, the relational schema is exam-
ined to decide which tables and attributes are interesting, other than primary and foreign keys.

As for the tables, we observe that ComponentModel and Component contain information that is not
relevant for the purposes of data analysis.

As for the attributes of other tables, the following considerations apply:

– Region: the attribute Name is of interest.

3.3. A Case Study 57

Inventory

QuantityOnHand
ReorderLevel

Date

Week

Day

Month

Quarter

Year

Model
Discount

ModelID

Description

Manufactory

Region Name

(a) Inventory

Sales
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

SalesOutlet
OutletRegion

Date

Week

Day

Month

Quarter

Year

Customer

Model
Discount

ModelID

Description

OrderIDManufactory

Region Name

(b) Sales

Figure 3.14: Initial data mart conceptual designs

– City: although not explicitly required, it is good to retain the information about the city, because,
as we shall see later, the table City is related to the table Region via a many-to-one relationship, and
because, in principle, it is always better to consider some more information, potentially relevant,
than what is strictly necessary.

– Manufactory: the attributes Phone, Address and ManagerName are not relevant for data analysis; the
pertinent attribute is the geographic location (City and Region).

– Inventory: all attributes are of interest for the data analysis of process Inventory.
– Model: the relevant attributes are ModelID, Discount and Description.
– Product: the attributes of this table are not of interest for data analysis.
– OrderLine: the attributes of this table are important for data analysis; Discount is a percentage.
– Order: ShipLocation is not useful for our purposes, while Date is of interest.
– SalesOutlet: the relevant attribute is the geographic location (City and Region).
– Customer: we are interested in Name and the geographic location (City and Region).

In this first analysis the keys to the tables were deliberately neglected, because they will be considered
later. Once the relevant information has been chosen, we proceed to the next phase of design, namely
the classification of entities.

2. Entity classifications. We classify the tables in the relational schema based on their content and the
relationships between them:

– Transaction entity: Recalling the definition of transaction entity, it is quite easy to fit into this cat-
egory the tables Inventory and the merging of OrderLine and Order, with the granularity of OrderLine.
They, in fact, (a) describe events that occur frequently at certain dates and (b) contain numerical
attributes that represent possible measures of interest for the analysis of data. Note that the table

3.3. A Case Study 58

Model contains other numerical attributes, but they are not relevant for data analysis.
– Component entity: They are the tables related to a transaction entity via a one-to-many relation-

ship. Analyzing the relational schema it is discovered that

– for the transaction entity Inventory, the component entities are Manufactory and Model,
– for the transaction entity OrderLine, merged into Order, the entities component are Customer,

SalesOutlet and Inventory.

Finally, as mentioned earlier, among the entities of each entity component, we add the time entity
(present in the relational schema with attributes of type Date).

– Classification entities: These are the tables related to a component entity by a chain of one-to-
many relationships. Their interesting attributes are added to those of minimal component entity.

For the entity Manufactory, component of Inventory, the classification entities of interest are City and
Region.

For the entity SalesOutlet and Customer, component of OrderLine, the relevant classification entities
are City and Region.

For the entity Inventory, component of OrderLine, the relevant classification entities are Models and
Manufactory, with City and Region. Since in the requirements analysis of Sales process there is
no interest in Inventory attributes, the classification entities Models and Manufactory are treated as
components of the entity event OrderLine.

3. Definition of the candidate data mart conceptual designs. Having identified two interesting event
entities, we proceed with the definition of two conceptual designs for the data marts with the relative
dimensions (Figure 3.15).

Inventory

QuantityOnHand
ReorderLevel

DateModel
Discount

ModelID

Description

Manufactory

City
Region Name

(a) Inventory

OrderLine

UnitPrice
QuantityOrdered
Discount

SalesOutlet
OutletCity

OutletRegion

Date

Customer
CustomerCity

CustomerName

CustomerRegion

Model
Discount

ModelID

Description

OrderIDManufactory

City
Region Name

(b) Sales

Figure 3.15: The candidate data mart conceptual designs

3.3. A Case Study 59

As far as the dimensional hierarchies are concerned, the case contains only one which is explicit, that
between City and Region.

4. Analysis of data marts fact granularity and measures additivity. This step produces no informa-
tion other than that already known with regard to the fact Inventory. For the fact OrderLines, however,
we note that the measures UnitPrice and Discount% are not additive, and so in the final step of the
conceptual design, the solution used to the fact Sales is preferred.

3.3.4 Final Data Mart Conceptual Design

From a comparison of candidate designs and the initial ones, the terminology is unified and the final
designs are those of Figure 3.16.

Inventory

QuantityOnHand
ReorderLevel

Date

Week

Day

Month

Quarter

Year

Model
Discount

ModelID

Description

Manufactory

PlantCity
PlantRegion PlantName

(a) Inventory

Sales
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

SalesOutlet
OutletCity

OutletRegion

Date

Week

Day

Month

Quarter

Year

Customer
CustomerCity

CustomerName

CustomerRegion

Model
Discount

ModelID

Description

OrderIDManufactory

PlantCity
PlantRegion PlantName

(b) Sales

Figure 3.16: The final data mart conceptual designs

3.3. A Case Study 60

3.3.5 Data Mart and Data Warehouse Logical Design

Two data mart star schemas are defined with a different fact table for each conceptual design, while for
each dimension a table is defined in association with the fact table, by defining appropriate surrogate
primary keys and foreign keys (Figure 3.17a,b).

The data marts relational schemas are then integrated to define the DW schema. Note that the two star
schemas share the dimensions Date, Model and Manufactory. The structure of the DW is shown in Fig-
ure 3.17c.

Inventory

ModelID
DateFK
ManufactoryFK
QuantityOrdered
ReorderLevel

Date
DatePK
Week
Month
Quarter
Year

Inventory

ModelID
Discount
Description

Manufactory

ManufactoryPK
PlantName
PlantCity
PlantRegion

(a) Inventory data mart star schema

Sales
ModelID
DateFK
ManufactoryFK
SalesOutletFK
CustomerFK
OrderID �DD�
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

SalesOutlet
SalesOutletPK
OutletCity
OutletRegion

Date
DatePK
Week
Month
Quarter
Year

Customer
CustomerPK
CustomerName
CustomerCity
CustomerRegion

Model
ModelID
Discount
Description

Manufactory

ManufactoryPK
PlantName
PlantCity
PlantRegion

(b) Sales data mart star schema

Sales
ModelID
DateFK
ManufactoryFK
SalesOutletFK
CustomerFK
OrderID �DD�
QuantityOrdered
ExtendedPrice
ExtendedCost
Discount
Revenue
Margin

Inventory

ModelID
DateFK
ManufactoryFK
QuantityOrdered
ReorderLevel

SalesOutlet
SalesOutletPK
OutletCity
OutletRegion

Customer
CustomerPK
CustomerName
CustomerCity
CustomerRegion

Date
DatePK
Week
Month
Quarter
Year

Model
ModelID
Discount
Description

Manufactory

ManufactoryPK
PlantName
PlantCity
PlantRegion

(c) Data warehouse constellation schema

Figure 3.17: The data mart star schemas and the data warehouse constellation schema

3.4. Project Quality Control 61

3.4 Project Quality Control

Let us consider some checks for the final review of a project to improve its quality.

Conceptual Design

1. Granularity of the facts
The determination of the grain of the facts is the first key step in the design of a data mart. Choosing
the grain means deciding the meaning of a fact, and so the pertinent measures and dimensions.

For example, for orders with multiple lines, if the granularity is the order, it makes sense to consider
a measure that concerns the total order value, but not the amount of product ordered on each order
line, and so the Product dimension can not be used, but if the granularity is the order line, then it is
meaningful to consider measures about the quantity of product ordered, the price and the revenue (but
not the total order value), and the Product dimension.

In the data mart conceptual design, the measures have numerical values that can be added across
dimensions. Descriptive attributes must be modeled as degenerate dimensions.

The grain decision for the facts also determines the grain of each dimensions. For example, if the
grain for the PropertySales is an individual property sale, the grain of the Client dimension is the detail
of the client who bought a particular property.

2. Measures
Measures are numerical quantities useful for evaluating the performance of the processes to be ana-
lyzed. It is also useful to define measures that can be calculated from others, at the time of loading
the data. This is particularly true for values fundamental in the analysis, such as revenue and margin,
to avoid their being calculated by users incorrectly, or in different ways, within reports at the time of
the analysis. If the answers are wrong or inconsistent, the data warehouse will be viewed as wrong.

It is also important to document, as part of the conceptual design, whether they are additive, semi-
additive or non-additive, to avoid very common mistakes when they are summed up.

Another common error to avoid is modeling unit amounts (e.g. unit price) as measures rather than
extended amounts (e.g. extended price). This does not mean that unit amounts must be excluded from
conceptual design, because they may be valuable information for analysis. If there is not a dimension
where they can be stored, they may be placed in the data mart conceptual design as degenerate
dimensions.

The most useful measures are those additives that can be aggregated with any type of function and by
combining facts with various dimensions to answer common business questions.

The most critical measures, often to be avoided, are the non-additive because they can not be aggre-
gated with the sum. Typical examples are measures defined as rates or percentages. These measures
must be broken down into underlying components that are additive, to calculate the ratio of the sums,
not the sum of the ratio. For example, the margin rate is the ratio of the margin to revenue. These
components are fully additive, and they are usually defined as measures that can be safely aggregated
to any level of detail. The non additive margin rate is computed in a query, or by additional processing
logic in the reporting tool, as the ratio of the sums of margin and of revenue.

3. Date and Time
They should always be modeled separately as dimensions. They are modeled as facts descriptive
attributes only when are not used for analysis.

4. Dimensions quality
The dimensions should be chosen considering the user’s need for examining facts, and the future
development of the DW. If the same dimension appears in multiple data marts they must defined in
the same way to be shared (conformed dimensions). Examples of these dimensions are time, date,
customer and product.

3.4. Project Quality Control 62

(a) The dimensional attributes must be useful (a) to analyze facts (restrictions, groupings, and ag-
gregations) and (b) to produce summary reports with the headers using the users vocabulary to
facilitate understanding.

(b) The names of the attributes of different dimensions should be different: a way to disambiguate
them is to prefix the attribute with the dimension name. Attribute names should not be those used
in the operational databases, but those that are used in the analysis and that appear in reports.

(c) Dimensional attributes already represented as numerical measures of the facts should not be re-
peated in dimensions.

(d) The values of dimensional attributes, usually strings of characters, should facilitate the interpreta-
tion of the reports: avoiding codes (0/1, F/M, etc.) or adding attributes that describe them.

(e) Represent as a string data type attributes such as Date and Address only if there is no interest in
exploiting in the analysis the implicit hierarchies among their attribute values.

(f) If a fact is associated with more elements of a dimension, it must be modeled as multi-valued.
(g) The dimensions can be degenerate, that is they are without attributes because their values are

numbers, such as the order number, invoice number etc., or strings of characters.
(h) The dimensional hierarchies should always be present to make the analysis more useful at several

levels of detail.

Logical Design

1. Surrogate keys
Surrogate keys must be used for dimension tables, which may also include the primary key of the
source data.

2. No attributes with null values
Default attribute values must be set in the database schema to avoid nulls in the database. The default
value for all the fact measures must be zero in the schema. In SQL, NULL plus a number equals a
NULL, and the aggregate functions perform a NULL-elimination step, so that NULL values are not
included in the final result of the calculation. The only aggregate function that does not implicitly
eliminate NULL is the COUNT(∗) function. However, an aggregate function AGG(A), with A a set of
NULL, returns NULL, while COUNT(A) returns zero.

To deal with cases in which for a fact record the dimension value may be unknown, the dimension
table must have a special record with an attribute value “Not Found”, and when a fact record is
missing a dimension data, the foreign key value is the surrogate key of the record “Not Found”.

3. Degenerate dimensions
In the logical schema degenerate dimensions become attributes of the fact table as the foreign keys
to other dimensions, if the attributes take up little storage space, otherwise they are stored in separate
dimension tables.

Another type of degenerate dimension arises when there are a few attributes that take different values
(status indicators), e.g. order line with status (closed, open, canceled), customer satisfaction, type
of delivery, payment terms etc. These attributes could be added (a) in the fact table, increasing its
memory size, (b) in the relevant dimension tables, duplicating the records (if a customer pays in cash,
by bank transfer, credit card, three records are needed), (c) in different dimension tables of small
cardinality, by increasing the number of foreign keys in the fact table, (d) collect them all into a
separate dimension table with as many attributes as there are fields with discrete values, and as many
elements as are the possible combination of values (junk dimension). The latter solution is preferable
in the presence of several attributes of state indicators used in the fact table or in different dimension
tables.

4. Shared data
If the shared data are dimensional hierarchies, such as geographic hierarchies, in the logical design a
way to treat them is to deconstuct the dimension table into a tree structure. So a snowflake dimension

3.5. Summary 63

is defined, and its advantage must be evaluated considering the savings in space, the greater complex-
ity of the scheme, the execution time analysis, and any ambiguity in analysis, such as “Analysis of
the total revenue for the city”: What city does it refers to? Customer, agent, or the warehouse city?

To facilitate understanding of the data mart schema, and to avoid ambiguous analysis, if the tables are
small, it is usually preferable to duplicate shared hierarchies in the dimension tables using different
attribute names.

If the shared data are dimensions, or there are more dimensions with different attributes that have the
same values (e.g. two dates with the same attributes day, month, year, or with different attributes to
highlight the role of different dates), such as OrderDate and ReceivedDate, another solution may be
used. Instead of using two separate date tables, with the same granularity, two views are created, with
different attribute names, from a single Date table.

5. Dimensional hierarchies.
Check that the hierarchies type (balanced, incomplete or recursive) is correctly represented. More-
over, verify that functional dependencies hold over a loaded dimension table with dimensional hi-
erarchies. For example, let the dimension be Date(PkDate, Month, Quarter, Year). If the dimensional
hierarchy Month→ Quarter is valid, then following query returns an empty result set.

SELECT Month
FROM Date
GROUP BY Month
HAVING COUNT(DISTINCT Quarter) > 1;

6. Snowflake dimensions
Do not normalize (snowflake) dimension tables, since it will be harder for the users to analyze data.
Moreover, in general, there is not a very significant memory saving because of the relatively small
cardinality of the dimension tables. Snowflakes are meaningful only when it is necessary to define
interesting dimension tables shared among several data marts.

7. Changing dimensions
Recognize the dimensions with attributes that change over time and treat them appropriately.

3.5 Summary

– The design of a data warehouse to support business decisions is a complex task that requires a method-
ology organized into phases, like that used to design operational databases, but the phases objectives
must be revised properly to adapt them to multidimensional modeling.

– A possible design methodology has been presented, with the documentation to be produced at the end
of each phase, to proceed by considering both the requirements analysis and the operational database
available.

– The logical design phase has been presented to highlight some critical aspects of the transition from
the conceptual design to the relational one, especially for treating dimensions that change over time,
multivalued dimensions and multivalued dimensional attributes.

– Finally, some controls have been listed for the final review of a project to improve its quality.

3.5. Summary 64

Chapter 4

A DATA WAREHOUSE TO SUPPORT
ANALYTICAL CRM ANALYSIS

Customer relationship management (CRM) comprises a set of processes and enabling systems supporting
a business strategy to build long term, profitable relationships with specific customers. Customer data
and Business Intelligence applications form the foundation upon which any successful CRM strategy
is built. From the architecture point of view, the CRM framework can be classified into operational
and analytical. Operational CRM refers to the automation of business processes, whereas Analytical
CRM refers to the analysis of customer characteristics and behaviors so as to support the organization’s
customer management strategies. A taxonomy of typical Analytical CRM decision support analyses is
presented first, and then the design of a starter data warehouse for a case study to support them with
analytic SQL queries.1

4.1 Introduction

A business enterprise (company) is an organization that transforms a set of resources into products (goods
or services) that can profitably be sold in the market. While the guiding principle of the production (effi-
ciency and innovation) has not changed over time, the company strategy of approaching the market, and
so the concept of marketing, has changed profoundly because of technological, production and market
events which have characterized the industrialized countries evolution in the past.

In a nutshell, Philip Kotler summarizes the evolution of strategies to approach the market in the recent
economic history as follows:

– Production orientation. The goal is to reduce production costs, because the market is characterized
by a shortage of manufactured goods relative to demand. To put it another way, if somebody makes
a product, somebody else will want to buy it. This orientation dominated business from the time of
the industrial revolution until the early 1920’s, beginning of capitalism to the mid 1950s, and it still
exists in some developing countries industries, where the market wants cheap commodities. In this
context, the main problem is how to reach the market; the marketing function corresponded to what
is now called physical distribution and sale of the product, and the American Marketing Association
defined marketing as “the set of activities to direct the flow of goods and services from producers to
consumers and commercial users.”

– Product orientation. The goal is the continuous product improvement, in terms of quality, perfor-
mance and innovation, because customers prefer products that offer a high level of quality and per-
formance, and they are willing to pay a higher price for the differential characteristics. It is the belief
that good products require a modest marketing effort (they sell themselves). This orientation is typical
around the 30s of the twentieth century.

– Sales orientation. The goal is to sell what is produced with an activity of advertising and selling
on a large scale, because the market is characterized by a balance of supply and demand. With this

1. The material is based on some ideas and examples presented in [Adamson and Venerable, 1998], [?].

4.2. Operational and Analytical CRM 66

orientation, the selling philosophy gave way to the concept of marketing. This orientation is typical
of the 50s and 60s of the twentieth century.

– Market orientation. The goal is to produce what is desired by customers, because the market is charac-
terized by an excess of supply over demand. It is therefore necessary first to determine what products
are desired by customers and then produce them, instead of first creating products and then trying
to persuade customers that they need them (from the strategy produce-and-sell to the strategy listen-
and-make). This orientation is typical from the later years of the twentieth century and is always in
continuous development nowadays. Business scholars began to actively discuss the concept of market
orientation in 1990 with a paper by Ajay K. Kohli and Bernard J. Jaworski for the “Journal of Mar-
keting” that defined market orientation as organizational business intelligence focusing on the needs
of the customer and how to apply that intelligence to the operations of the organization.

Marketing is the activity, set of institutions, and processes for creating, communicating, deliv-
ering, and exchanging offerings that have value for customers, clients, partners, and society
at large. (American Marketing Association, 2007)

By understanding the market environment, customer needs, and by defining a customer-oriented market-
ing strategy, the company is able to reach the goal of a greater personalization of the offer based on the
wishes of its customers and, therefore, to create profitable relationships with them. In this context the
Customer Relationship Management (CRM) comes into play, defined by Kotler as follows:

CRM is a business strategy that aims at the creation and consolidation of profitable relationships
with specific customers by offering superior value and satisfaction.

More profit from each customer relationship can be obtained (1) acquiring new customers, (2) increasing
the profitability of existing customers and (3) extending the duration of customer relationships.

The CRM therefore requires, more and more, companies looking for marketing and the use of business
intelligence techniques for analyzing and understanding customer purchase behavior and characteristics,
and to use this information to focus on the most promising and profitable customers.

In the next section the focus will be on the main components of CRM and on the most common data
analyses to support it.

4.2 Operational and Analytical CRM

The customer relationships are considered by modern companies a key strategic resource to be managed
appropriately to increase the business value and gain competitive advantage.

The CRM is the answer to this need that requires

1. A strategic approach based on the integration of following concepts and tools

– organization (review of processes, incentive systems, skills, etc.),
– marketing (relational and one-to-one, Customer Value Management, etc.),
– information and contact systems with customers, potential or current.

2. A relationship management along the customer lifecycle.
3. An in-depth and integrated customer knowledge built using a variety of data sources organized and

analyzed consistently with the analytical, decision-making, and operational capabilities present in the
company.

From the architecture point of view, the main components of the CRM framework are the Operational
CRM and the Analytical CRM (Figure 4.1).

4.2. Operational and Analytical CRM 67

Operational
Marketing

Sales

Services

In Person

Voice

Web

Mail

Contact Systems

Operational CRM

Analytical CRM

Business Intelligence
Applications

Data Mining

Multidimensional Analysis

Reports

CRM BD

CRM DW

O
pe

ra
tio

na
lS

ys
te

m
an

d
E

R
P

A
ct

iv
e

an
d

pr
os

pe
ct

s
C

us
to

m
er

E
xt

er
na

lS
ou

rc
es

Closed
Loop

Data

Decision Plans

Figure 4.1: The components of the CRM framework

4.2.1 Operational CRM

The Operational CRM system manages the execution of operational activities and processes of inter-
action with customers using the most suitable channels for the content of the activity or service to be
provided. There are several channels of interaction that differ in the quality of information that can be
exchanged (in person, voice, mail, fax, SMS, email, websites, etc.).

Computer applications relate to three main processes of company-customer interactions:

– Operational marketing to create new opportunities for contact with customers and prospects, orga-
nizing the activities of advertising, communication and promotion. Some examples of applications
are:

– Management of new contacts.
– Management of advertising campaigns.
– Telemarketing.
– Management of promotional campaigns.

– Sales for the activities after the first contact that can lead to the formulation of a business proposal,
to the drafting of a contract, to the formulation and process of orders. Some examples of applications
are:

– Contact management.
– Management of sales opportunities that could arise.
– Management of the business estimates;
– Management of customer information relevant to the sale.
– Configuration of the products or services.
– Management of products catalog and related price lists;

4.2. Operational and Analytical CRM 68

– Management of the sales force.

– Customer service to respond to customer requests for information or assistance, consistent with the
company strategies and the characteristics of the customers. Some examples of applications are:

– Management and analysis of requests for assistance.
– Management of the operations in the territory;
– Assistance “self-service” on the web (FAQs, technical documentation, etc.).
– Management of service level for customers;
– Management of remote assistance centers (help desk, call center etc.).

An important element of the Operational CRM is its database that extend the operational one with all
other available data on customers, sales, contact, motivation, satisfaction, and purchase behavior:

– Customer data: Socio-demographic, on purchased products or services, on customer satisfaction,
status of the customer life cycle, on the origin of the contact etc.

– Products and services data: Data on commodities (raw materials, delivery, price lists, discounts,
warranties, etc.) and data on “variant” of goods or services (customization, configuration options,
etc.).

– Marketing activities data: Types (e.g, institutional advertising, “targeted” print campaign, brochures,
web marketing initiatives), duration (start and end times), correlation with the results (contacts acti-
vated, contacts coming to fruition) etc.

– Data on interaction systems used: Types, performance data, etc.

4.2.2 Analytical CRM

The Analytical CRM system supports decision making by providing useful information extracted by the
analysis of data collected by Operational CRM and properly organized in a data warehouse based on the
needs of decision makers. The objective is to identify both the best customers for more profitable busi-
ness relationships, and the customers having high defection risk, based on their profiles and purchasing
behavior.

The two main components of the CRM must operate in a highly integrated and synergistic manner
to create a closed loop between them: with the activities of operational marketing, sales and customer
service, the Operational CRM produces data on the dynamics of relationships with customers (customer
life cycle) which are then analyzed by the Analytical CRM to support the organizations decision-making
process. These decisions lead to new operational actions for customer contact and so on. The interaction
between the two components are critical to the achievement of the objectives and advantages of CRM.

Typical examples of Analytical CRM analyses categories are: Sales and Marketing Analysis, Prof-
itability Analysis, Service Quality Analysis, and Customer Analysis (Figure 4.2).2

2. For the sake of simplicity, we will not consider (a) Contact Center Analysis to analyze the effectiveness of the company
contact center used to interact with customers, i.e. the activities within a call center, the problems reported to and resolved
via the help desk, and (b) eCRM or Web-based CRM Analysis to determine the effectiveness of the site as a channel-to-market
by quantifying the user’s behavior while on the Web site.

4.2. Operational and Analytical CRM 69

Analytical
CRM Analysis

Sales and
Marketing Profitability Service Quality Customer

Figure 4.2: Types of Analytical CRM analyses

An analysis category is a logical grouping of related business questions with the KPIs to evaluate. A
business question is an inquiry that the end user want answered, and the KPIs reflect the organization’s
goals and success factors.

Sales and Marketing Analysis

The goal of each company is to profitably sell what it produces. Profit is important, but there is no profit
unless there are sales. For this reason, each company initially focuses on the analysis of product sales
(revenues or volumes) during its strategic planning and resource allocation. Among the possible types
of analysis there are those by product, sales channel, geographic area, and customer. The sales analysis
allows then to plan and evaluate the effects of promotional campaigns on current and potential customers.

Profitability Analysis

Revenues from sales must be analyzed taking into account the cost of resources used to produce them,
because the profitability of sales (revenue minus costs) is an indicator of the firm’s ability to maintain,
over time, an advantage over its competitors. As in the case of sales, profitability is analyzed by product,
sales channel, geographic area, customer, and promotional campaigns.

Service Quality Analysis

The success of a company depends not only on the ability to profitably sell its products, but also on
ability to meet the demands and expectations of customers in a more efficient and effective manner
than competitors. This is increasingly seen as critical to the long-term success. For this reason, specific
analyses are needed both to understand the most common reasons for return of products not conforming
to what was ordered, and the impact that the returns have on the revenues of the company, and the ability
to deliver orders in full and timely.

Customer Analysis

The analysis of data on customer purchases are of great importance in the Analytical CRM to consolidate
the orientation to relationships with customers. The purpose of a company is to create and serve a
customer, to meet his needs, and therefore the value of a company depends primarily on the value of
its relationships with customers, and so they focus on business strategies issues such as: acquiring a
thorough knowledge of customers, figure out who they are, what they buy and what they might buy, as
their purchasing behavior changes. The better one knows one’s customers characteristics and behavior,
the better one can maintain long-lasting, valuable relationships with them.

Typical examples of analyses focuses on finding the best customers (those that produce larger profit
margins for the company), the most loyal customers, the customer defected, the customer groups (seg-
ments) with similar purchase behavior, or characterized by combinations of very specific attributes (geo-
graphic, demographic, psychographic). Each type of customer segment is then considered to implement
specific marketing strategies or to redefine the production.

4.3. Sales and Marketing Analysis 70

In the following, the focus will be on the the conceptual design of a DW to support Analytical CRM
multidimensional analysis in the context of a company that sells its products under orders issued by
customers. The project will be done gradually starting with the sales and marketing requirements, and
then the DW design will be extended to support the other types of analyses.

Although a DW allows several interesting analyses, there are many others, especially those that in-
volve predictive analytics, behavior recognition, cluster analysis and patterns finding, that require an
exploratory approach to discovery useful models of data with Data Mining algorithms on data subsets
extracted with queries from the DW. Data mining techniques, used to gain additional insights into cus-
tomer behaviors and other characteristics that are of interest to the organization, are beyond the scope of
this book.

4.3 Sales and Marketing Analysis

Sales and marketing analysis allows a company to analyze its sales of products as well as the effectiveness
of its marketing and campaign efforts.

A common use for sales data is to identify the best members of business dimensions in terms of
the total revenue value that exceeds some threshold. Other example of questions are: Which products are
increasing in popularity and which are decreasing? Which products are seasonal? Which customers place
the same orders on a regular basis? Are some products more popular in different parts of the country?
Do customers tend to purchase a particular type of product?

The answers to these questions motivate the design of the first data mart for sales.

4.3.1 Sales Analysis

Sales drive business.

The case study is about a company interested in analyzing confirmed purchase orders. The following
terminology will be used:

– Each order line is about the request for a product in a certain amount (Quantity ordered), which can
be confirmed in a smaller amount (Quantity sold).

– A product has a unit price, a unit cost and a unit discount. When a product is sold in a certain amount,
the following quantities are of interest:

extended price = unit price × quantity sold
extended cost = unit cost × quantity sold
extended discount = unit discount × quantity sold

– The revenue from a product sales is:

revenue = extended price − extended discount
– The margin from a product sale and the margin as percentage of the revenue are:

margin = revenue − extended cost
margin% = 100× margin / revenue

Requirements Analysis

Let us assume that from the business requirements analysis the following metrics have been identified
for the following types of sales analysis of the products ordered by customers:

– Number of products ordered.
– Number of products sold.
– Number of different customers.

4.3. Sales and Marketing Analysis 71

– Number of orders.
– Total revenue.
– Average revenue.
– Average order revenue.

The metrics are analyzed by the following dimensions:

– The Date, with attributes Month, Quarter, Year, to understand how the customers’ purchase preference
changes over time, especially that one of the customers who purchase regularly or more than others.

– The Product, with attributes Name, Type, Category, Year, to understand which products are preferred by
customers, which are seasonal, and what promotional activities take.

– The Channel, with values “Direct”, “Telemarketing”, “Web”’, to understand the different means in which a
customer interacts with the company.

– The Customer, with attributes Name, BirthDate, Gender, City, Region, to understand customer behaviors
in specific markets, profitability in those markets, as well as campaign effectiveness in those markets.
For simplicity, we assume that the Market, where the company sell the products, is the city of residence
of the customers.

Conceptual Design

The fact to analyze has the following grain:

Fact granularity
Description A fact is the sale of a product

Preliminary dimensions Product, Date, Order, Channel, Customer

Preliminary measures Quantity Ordered, Quantity Sold, Product Extended Price, Product
Extended Discount, Revenue

All the measures are additive.

Figure 4.3 shows the data mart conceptual design for sales analysis.

Sales
QuantityOrdered
QuantitySold
ProductExtendedPrice
ProductExtendedDiscount
Revenue

Date
Day

Month

Quarter

YearChannel

Order

Product
ProductName

ProductType

ProductCategory

ProductYear

Customer
BirthDate

City
Region

Gender

Name

Figure 4.3: The sales data mart conceptual design

4.3. Sales and Marketing Analysis 72

4.3.2 Marketing Analysis

Sales drives the business. Marketing, in turn, drives sales.

The marketing department, based on appropriate analysis of sales, identifies segments of customers with
similar purchasing behavior to which address a direct marketing campaign, with certain types of promo-
tion, to motivate customers to place orders through various channels. At the end of the campaign, it will
be evaluated its impact on sales, and which customers respond to which campaigns.

Requirements Analysis

The main requirements expressed by the managers are the following:

– The goal of a promotion campaign is to stimulate the purchase of certain products by a customer seg-
ment identified based on their purchasing behavior and their demographic characteristics, considering
both the active ones and those recently inactive.

– Customers are contacted directly and informed of the promotion type.
– The information of interest of a promotion is the start and end date, the promotion cost, the channel

used to communicate the offer to customers (email, phone), the type (coupon, discount, gift, etc.),
and the value.

– The company’s interest is to analyze the sales generated by a promotion and the percentage of inactive
customers who have been reactivated with the promotion, and to compare sales where the product was
on promotion with sales where the product was not on promotion.

Conceptual Design

A new data mart Contacts is defined with the dimensions shown in Figure 4.4, which shares the Sales
dimensions Date, Customer and Product.

Contact CustomerDate

Product
Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

Figure 4.4: The data mart conceptual design for promotions contacts

To simplify the analysis to evaluate the success of marketing promotions, the Sales data mart has been
extended with the Promotion dimension of the Contacts data mart (Figure 4.5). The promotions goal is to
promote sales, so usually there is some kind of discount on the price of the products. If in the facts we
want distinguish the types of discounts, the one for promotion will be considered too.

4.4. Profitability Analysis 73

Sales
QuantityOrdered
QuantitySold
ProductExtendedPrice
ProductExtendedDiscount
Revenue

Date
Day

Month

Quarter

YearChannel

Order
Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

Product
ProductName

ProductType

ProductCategory

ProductYear

Customer
BirthDate

City
Region

Gender

Name

Figure 4.5: The Sales data mart conceptual design extended to deal with promotions

The data mart allows different analyses, but not those relating to products on promotion that have not
been sold, because these events are not represented in the Sales data mart. To perform these types of
analyses the Contact data mart must be used too to find out first the products that have promotions, then
the Sales is used to find out products that have promotion that sell, and finally the difference is the
products that have promotion but did not sell. According to Kimball, Contact is called a coverage fact
that contains the information about which product where on promotion at which times.

4.4 Profitability Analysis

Whatever the value proposition of a business’s product is, the business
must realize enough revenues in delivering it to cover the associated costs.

The profitability analyses deal with identifying the best members of business dimensions in terms of the
total margin that exceeds some threshold. For example, the best customers, the best products, the best
markets, the best channels or best campaign that generates the greatest margin.

In the following, for brevity, we only consider the profitability of products, but the others are analyzed
in a similar manner.

4.4.1 Products Profitability

The product profitability analysis allows a company to determine the profitability of each product or
service that the business provides.

Products profitability is measured by sales margins. Revenues are easily evaluated, but the cost of the
products is not easy to identify. Since we are interested in product profitability, we will focus on the costs
that the business associates with products.

– Product cost is about all the costs that are involved in acquiring or making product.
– Marketing cost is about the costs of all activities performed to generate interest in the consumer.

4.4. Profitability Analysis 74

– Nonconformance cost is about the costs of non-conforming products replacement or refund, assis-
tance and technical support during the warranty period.

If, for simplicity, in the data mart conceptual design of daily sales the measure “product cost” only has
been considered, for the process of sales (Figure 4.6), then we can only perform a partial analysis of the
profitability of the type shown in Figure 4.7.

Sales
QuantityOrdered
QuantitySold
ProductExtendedPrice
ProductExtendedCost
ProductExtendedDiscount
Revenue
Margin

Date
Day

Month

Quarter

Year

Channel

Order
Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

Product
ProductName

ProductType

ProductCategory

ProductYear

Customer
BirthDate

City
Region

Gender

Name

Figure 4.6: The Sales data mart conceptual design for products profitability analysis

Products Profitability
Year 2010

Product Revenue Product Cost Margin Margin%
(¤) (¤) (¤) (%)

P1 41 093 39 000 2 093 5
P2 4 674 3 830 844 18
P3 240 125 181 542 58 583 24
.

Figure 4.7: A limited products profitability analysis

In general, however, the products profitability must be analyzed considering the costs due to other pro-
cesses that affect sales. Two typical examples are:

– The cost for product promotion.
– The cost for the management of product returns.

Considering the costs of these processes, a full analysis can be made of the profitability of the type shown
in Figure 4.8, with different results.

4.4. Profitability Analysis 75

Products Profitability
Year 2010

Product Returns Returns Promotion Total
Product Revenue Cost Value Cost Cost Cost Margin Margin%

(¤) (¤) (¤) (¤) (¤) (¤) (¤) (%)

P1 41 093 39 000 1 650 248 4 800 44 048 −4 605 −12
P2 4 674 3 830 84 14 0 3 844 746 16
P3 240 125 181 542 4 367 888 6 200 188 630 47 128 20
. .

Figure 4.8: A more general Product Profitability analysis

Figure 4.9 shows how to review the project by adding the cost measure ProductPromotionCost to the Sales
data mart.

The value of this measure is the promotion cost allocated to a product, and it is calculated when the
promotion has expired, by dividing the total cost of the promotion by the number of products sold during
the promotion.

The nonconformance cost ProductReturnsCost is discussed in the next section.

Sales
QuantityOrdered
QuantitySold
ProductExtendedPrice
ProductExtendedCost
ProductPromotionCost
ProductExtendedDiscount
Revenue
Margin

Date
Day

Month

Quarter

Year

Channel

Order
Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

Product
ProductName

ProductType

ProductCategory

ProductYear

Customer
BirthDate

City
Region

Gender

Name

Figure 4.9: The Sales data mart conceptual design for products profitability analysis with the
promotion cost

4.5. Service Quality Analysis 76

4.5 Service Quality Analysis

Customers do business with companies that continually
meet the expectations created by the marketing process.

The customer service analysis allows an organization to analyze the conformance of a product or service
to customers expectation. In particular, we will consider product return analysis to investigate the number
of product returned as well as to provide insight as to why products are being returned, and product
delivery performance analysis, also known as order fulfillment analysis, to investigate the company’s
ability to deliver product and services on time.

4.5.1 Returns Analysis

A common use for sales data is to identify the best members of business dimensions in terms of the total
profit value that exceeds some threshold. But returns might have an impact on the analysis of some of
the major business dimensions. To avoid the risk of overestimating the products profitability, the effects
of the returns and the reasons must be considered: the best product that is returned because defective it
can become the worst in terms of margins and may impair the image of company.

For the returns analysis the following measures are considered:

– Returns value. It is the amount refunded or credited to customers returning products. This amount is
an important part of product profitability. It must be deducted from revenue so that we do not credit
products with revenue that was subsequently lost. When a customer exchanges a product for the same
product, the returns value is zero.

– Returns cost. It is the costs due to the transport of returns, for the repair of damaged products, and any
other costs that includes the process of handling returns. The company’s accounting system provides
the procedures for determining the values of these cost items.

With the returns analysis the company, beside evaluating the overall impact on profitability, it can monitor
the main causes of returns and determine interventions to address the main issues. Finally, the analysis
of returns by customer can show potential dissatisfied customers that may leave.

Requirements Analysis

The main requirements expressed by the managers are the following:

– Of a return product is of interest the amount returned, the order number, the return value, the return
cost, the reason for return, the date, the customer and the order in which it was requested.

– The returns are described by a Disposition (replacement, credit, refund, repair), and by a Reason (late
delivery, product other, product damaged, etc.)

The following are some examples of business questions to be answered by the data marts:

– Total number and percentage of returns on the amount of sales, by market and year.
– Total amount of returns and costs, by product, reason and month.
– Number of orders with returns, its percentage of the total quantity of orders, and number of returns,

by market and years.
– Total amount of returns, by customer, product and return disposition.
– Total revenues, margins, returns value, returns costs, residual margins and residual margins of rev-

enues, by product and year.
– Total revenues, product costs, promotion costs, returns costs, residual margins and residual margins

of revenues, by product and year.
– The top 10 reasons for the returns of products.

4.5. Service Quality Analysis 77

Conceptual Design

An approach to the analysis of returns is to provide a fact data mart Returns with the following granular-
ity:

Fact granularity
Description A fact is the quantity of a returned product

Preliminary dimensions Product, Date, Order, Customer, Disposition, Reason

Preliminary measures Returns quantity, Returns value, Returns cost

All measures are additive.

In Figure 4.10 it is shown the data mart conceptual design for Returns, which shares the Sales dimensions
Date, Customer, Orders and Product.

Returns
Quantity
Value
Cost

OrderDate

Product Customert

Disposition Reason

Figure 4.10: The data mart conceptual design for Returns

To consider in the sales analysis the nonconformance cost, the measure ReturnCost and the dimension
Return have been added to the Sales data mart.

Since in the returns analysis it is interesting to know who are the suppliers of the products with quality
problems, the Supplier dimension is also added to the data mart (Figure 4.11).

Sales
QuantityOrdered
QuantitySold
QuantityReturned
ProductExtendedPrice
ProductReturnValue
ProductExtendedCost
ProductPromotionCost
ProductReturnCost
ProductExtendedDiscount
Revenue
Margin

Date
Day

Month

Quarter

Year

Channel

Return
Description

Reason

Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

Product
ProductName

ProductType

ProductCategory

ProductYear
Supplier

SupplierName

SupplierCity

SupplierRegion

Order

Customer
BirthDate

City
Region

Gender

Name

Figure 4.11: The data mart conceptual design for sales with returns

4.5. Service Quality Analysis 78

4.5.2 Order Fulfillment Analysis

The full and timely orders fulfillment are other important aspects to improve the competitiveness of com-
panies. The analysis of the order fulfillment process, as the analysis of returned products, can highlight
any customer dissatisfaction which can be the basis for their abandonment.

Requirements Analysis

The managers are interested in the following examples of business questions:

– Number and percentage of orders processed on time and late, by months.
– Number and percentage of orders processed on time and late, by distribution channel and by year.
– Number and percentage of orders processed on time and late, by customer and by month.
– Comparison of the amount of products ordered and sold (e.g., by differences or ratios).

Conceptual Design

To analyze order fulfillment, the Sales conceptual design is modified by adding to the dimension Order
the attributes OnTime and OrderNo (Figure 4.12).

Sales
QuantityOrdered
QuantitySold
QuantityReturned
ProductExtendedPrice
ProductReturnValue
ProductExtendedCost
ProductPromotionCost
ProductReturnCost
ProductExtendedDiscount
Revenue
Margin

Date
Day

Month

Quarter

Year

Channel

Return
Description

Reason

Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

Product
ProductName

ProductType

ProductCategory

ProductYear
Supplier

SupplierName

SupplierCity

SupplierRegion

Order OrderNo

OnTime
Customer

BirthDate

City
Region

Gender

Name

Figure 4.12: The data mart conceptual design for sales and order fulfillment analysis

4.6. Customer Analysis 79

4.6 Customer Analysis

The demographic attributes and the purchases behavior
of the most profitable customers can be used to focus sales efforts.

The customer analysis is a very important part of Analytical CRM because it provides insight into an
organization’s customer base. That insight can be achieved by the following fundamental analysis:

1. Customer segmentation analysis allows a company to group similar customers into groups based upon
characteristics that are common to the members of that group. There are different types of customer
segmentation analysis:

– Demographic analysis pertains to analyzing inherent characteristics of a customer such as age,
gender, income, and geography.

– Customer behavioral analysis enables a company to study a customer’s buying propensities. In
other words, customer behavioral analysis is used to determine which products and/or services a
customer buys or is likely to buy.

– Customer lifetime value analysis is used to analyze a customer’s historical value and future value
to the company.

2. Customer retention analysis tracks and analyses the number of customers that a company is able to
keep from one time frame to another (i.e. customer loyalty).

3. Customer attrition (or churn) analysis allows a company to determine the number of customers lost
over a period of time and provides insight into why customers leave. Its goal is to reduce the number
of turnover of profitable customers by allowing a company to identify and take appropriate actions to
retain customers that are likely to leave.

4. Customer satisfaction analysis allows a company to gain insights into how a customer perceives
the organization by analyzing customer survey responses about the company and its products and
services (i.e. measures how satisfied the customer is). The results allow a company to understand the
key drivers for customer satisfaction and loyalty.

Requirements Analysis

For simplicity, we will assume that the conceptual design of the sales data mart must be enriched with
other customer information to do analysis not only on products purchased, but also to identify customer
segments to which address different marketing efforts, according to demographic variables (date of birth,
sex, age, occupation, education level), the geographic location (city and region) and the types of customer
behavior (for brevity, typology). The age of a customer is that when the order is made, while the typology
is determined as follows, based on their purchases behavior in the last month and previous months:

New With at least an order last month and no order in the past.
Constant With at least two orders per month for three months in the last four months.
Occasional With at least one order in the last four months, but not as for typology Con-

stant or New.
Churn risk With no order in the last four months after being Constant at least once in the

last 12 months.
Inactive With no order in the last four months, and not Constant in the last 12 months.

The following examples of business questions have been collected during the user interviews:

– Number and percentage of customers, by type, by market and year.
– Number and percentage of customers by income.
– Number and percentage of customers, by age range.
– Number and percentage of customers, by occupation and sex.
– Number and percentage of customers by education level and by sex.

4.6. Customer Analysis 80

– Number of distinct customers who responded to a promotion, percentage of total responses and per-
centage of total contacts, by customer typology.

Users are also interested in the following monthly analysis of the customers typology:

– Number of customers in one year, by typology and by month.
– Comparison of the number of customers in one year that have changed typology, by month.

The metrics will be analyzed by the following dimensions:

– Date, with attributes Month, Quarter, Year
– Product, with attributes Name, Type, Category, Production Year
– Customer, with attributes Name, Gender, Birth Date, Age, Qualification, Profession, Typology, City, Region.

It is assumed that (a) sales data are collected every day and (b) some customer data may change over
time and must be treated as follows:

Type 1 (overwriting the history): Qualification, Profession.
Type 2 (preserving the history): City, Region.
Type 4 (fast changing): Age, Typology

Conceptual Design

To support customers analysis, the Customer dimension is extended with demographic and typology at-
tributes, and a new data mart CustomerTypology has been defined for the monthly analysis of the customers
typology evolution.

All the data mart conceptual designs to support the Analytical CRM analysis are shown in Figure 4.13.
The data marts share dimensions with the same name.

Sales
QuantityOrdered
QuantitySold
QuantityReturned
ProductExtendedPrice
ProductReturnValue
ProductExtendedCost
ProductPromotionCost
ProductReturnCost
ProductExtendedDiscount
Revenue
Margin

Date
Day

Month

Quarter

Year

Channel

Return
Description

Reason

Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

Product
ProductName

ProductType

ProductCategory

ProductYear
Supplier

SupplierName

SupplierCity

SupplierRegion

Order OrderNo

OnTime
Customer

BirthDate

Age

City
Region

Gender

Name

Typology

Profession

Qualification

(a) Sales

CustomerTypology

Customer

Month

TypologyPreviousMonth

Typology

(b) Customer typology

Contact CustomerDate

Product
Promotion

PromoCost

PromoType

PromoValue

PromoMedium

StartDate

EndDate

(c) Contact

Returns
Quantity
Value
Cost

OrderDate

Product Customert

Disposition Reason

(d) Returns

Figure 4.13: The data mart conceptual designs for Analytical CRM analysis

4.7. Data Warehouse Logical Design 81

4.7 Data Warehouse Logical Design

For simplicity we consider only the data mart Sales, and we define a relational table for the facts with the
following attributes:

– A foreign key for each dimension, with its own surrogate primary key.
– The measures.
– The degenerate dimensions Order and Channel.
– The simple measures OnTimeCount, OrderCompleteCount, DamageFreeCount, with value 1, if respec-

tively the order delivery was on time, the line order is complete and it didn’t entail any return, oth-
erwise 0. It is useful to include these measures about order fulfillment to simplify some analysis
interested in counting events.

The Product table contains all possible products on sale, the Customer table contains all the customers
who have made at least one order and the Date table contains all the dates of the period of interest.

For the treatment of the customers attributes that change slowly, City and Region, with mode Type 2, a
surrogate primary key is used in the Customer table, and for each attribute change a new record is created
with a different primary key surrogate. To find out which of Sales data refer to the same customer,
regardless of residence (for example, to know the number of different customers who have made orders),
in the fact table the attribute InitialCustomerKey is added as a degenerate dimension, with the first surrogate
key value assigned to a customer.

Finally, for the treatment of customer attributes that change frequently, Age and Typology, with mode
Type 4, one of the following solutions can be used: To store possible attribute values in two dimensional
tables or to store different possible combinations of the two attribute values in a single dimensional
table. Since every attribute has few values (for Age we consider the following ranges: (up to 25), (26-34)
(35-60) and (61 and over)), the second solution is preferred (Figure 4.14).

Sales
ProductFK
DateFK
CustomerFK
TypologyAgeFK
ReturnFK
PromotionFK
SupplierFK
QuantityOrdered
QuantitySold
QuantityReturned
ProductExtendedPrice
ProductReturnValue
ProductExtendedCost
ProductPromotionCost
ProductReturnCost
ProductExtendedDiscount
Revenue
Margin
OnTimeCount
OrderCompleteCount
DamageFreeCount
OrderNumber �DD�
Channel �DD�
InitialCustomerKey �DD�

Product
ProductPK
ProductName
ProductType
ProductCategory
ProductionYear

Supplier

SupplierPK
SupplierName
SupplierCity
SupplierRegion

Return
ReturnPK
Disposition
Reason

Customer
CustomerPK
Name
Gender
BirthDate
Profession
Qualification
City
Region

TypologyAge

TypologyAgePK
Typology
AgeRange

Date
DatePK
Month
Quarter
Year

Promotion
DatePK
StartDate
EndDate
PromoType
PromoValue
PromoMedium
PromoCost

Figure 4.14: Initial logical design of a data mart for sales

4.7. Data Warehouse Logical Design 82

4.7.1 Data loading

The operation is not trivial, as usually happens in the process of data warehousing, and it requires an
appropriate program that processes the results of SQL queries. The operation may also require a review
of logical design, as shown in this example.

Suppose that the data on sales are loaded into the data mart every day, from the data in the following
tables created from the operational database:

– Products(PKProductBD, Name, Type, Category, ProductionYear, UnitCost), with data on products sold.
– DailySales(FKProductBD, FKCustomerBD, Date, QuantityOrderder, QuantitySold, ExtendedPrice, Discount, Or-

derNumber), with data on sales.
– CustomerData(PKCustomerBD, Name, Gender, BirthDate, Qualification, Profession, City, Region), with data

on customer who have made orders.
– Suppliers(PKSupplierBD, Name, City, Region), with data on suppliers.
– Returns(PKReturnsBD, FKProductBD, FKCustomerBD, OrderNumber, Date, Quantity, Value, Cost, Disposition,

Reason), with data on returns.
– Promotions(PKPromoBD, FKProductBD, FKCustomerBD, StartDate, EndDate, Name, Type, Value, Medium,

Cost), with data on promotions.

There is also the table Classification(FKInitialCustomerKey, FKDate, FKTypologyAge) which contains, for each
month, the information on the value of the customer typology established at the end of each month based
on their buying behavior calculated from the fact Sales data.

The table Classification is another fact that shares with the fact Sales the dimensional tables Customer,
TypologyAge and Date (Figure 4.15).

Sales
ProductFK
DateFK
CustomerFK
TypologyAgeFK
ReturnFK
PromotionFK
SupplierFK
QuantityOrdered
QuantitySold
QuantityReturned
ProductExtendedPrice
ProductReturnValue
ProductExtendedCost
ProductPromotionCost
ProductReturnCost
ProductExtendedDiscount
Revenue
Margin
OnTimeCount
OrderCompleteCount
DamageFreeCount
OrderNumber �DD�
Channel �DD�
InitialCustomerKey �DD�

Product
ProductPK
ProductName
ProductType
ProductCategory
ProductionYear

Supplier

SupplierPK
SupplierName
SupplierCity
SupplierRegion

Return
ReturnPK
Disposition
Reason

Customer
CustomerPK
Name
Gender
BirthDate
Profession
Qualification
City
Region

TypologyAge

TypologyAgePK
Typology
AgeRange

Date
DatePK
Month
Quarter
Year

Promotion
DatePK
StartDate
EndDate
PromoType
PromoValue
PromoMedium
PromoCost

Classification
DateFK
InitialCustomerKeyFK
TypologyAgeFK

Figure 4.15: New version of the logical design of a data mart for sales

4.7. Data Warehouse Logical Design 83

During the loading of data on sales at the end of the day, the age of a customer is that at purchase date,
while his typology is determined by a process more complex because the requirements rule is that (a)
for orders made during the current month, the customer typology is that of the previous month (which is
derived from the Classification table), if a customer is known, otherwise the value is New, (b) then at the
end of current month M the value is determined as follows:

1. Based on the purchasing behavior of customers over the last four months in Sales, a record is added
to Classification, for each value of InitialCustomerKey, with the value of customer typology, determined
as follows:

– Constant, if the customer has made at least two orders per month for three months in the last four
months. The number of orders in a month is determined by counting the number of distinct values
of OrderNumber of the customer purchases. Then examining the number of customer orders for
each of the four months, it is checked if in three months of the four, there are at least two orders.

– New, if the customer has done at least an order last month and none in the past. Customers who
have not made orders in the past can be identified in two ways: customers are not present in the
table Classification in the months prior to the current; or adding to the table Customer an attribute
with the initial validity date of the surrogate key (assigned at the date of the first order) and
checking that this falls within the current month M . The second method is preferred because
it is more efficient, since the table Customer is of much smaller size of the table Classification
(Figure 4.16).

– Occasional, if the customer is not New, but he has done at least an order over the past four months,
but not with the typology Constant. To determine whether the typology is Occasional, we proceed
as to Constant, by considering the number of orders in each of the last four months, and checking
that the threshold Constant is not reached, and that the customer is not new (i.e. if there are only
purchases in the last month, then the customer initial key has a validity date before the current
month M).

– Churn risk, if the customer has no order in the last four months after being Constant at least once
in the last 12 months. To determine whether the typology is Churn risk, two sets of values for the
InitialCustomerKey are computed: the first is the customers of the table Classification that have been
Constant at least once in the last 12 months; the second is the customers who have made orders in
the past four months. A customer in the first group but not in the second is classified as Churn risk.

– Inactive, if the customer has no order in the last four months and has not been Constant in the last 12
months. To determine whether the typology is Inactive, two sets of values for the InitialCustomerKey
are computed: the first is the customers of the table Classification that have been Constant zero times
in the last 12 months; the second is the customers who have made orders in the past four months.
A customer in both groups is classified as Inactive.

2. The value of the FKTipologyAge in the fact table Sales is updated in all the customer purchases made
from the beginning of the month.

4.8. Summary 84

Sales
ProductFK
DateFK
CustomerFK
TypologyAgeFK
ReturnFK
PromotionFK
SupplierFK
QuantityOrdered
QuantitySold
QuantityReturned
ProductExtendedPrice
ProductReturnValue
ProductExtendedCost
ProductPromotionCost
ProductReturnCost
ProductExtendedDiscount
Revenue
Margin
OnTimeCount
OrderCompleteCount
DamageFreeCount
OrderNumber �DD�
Channel �DD�
InitialCustomerKey �DD�

Product
ProductPK
ProductName
ProductType
ProductCategory
ProductionYear

Supplier

SupplierPK
SupplierName
SupplierCity
SupplierRegion

Return
ReturnPK
Disposition
Reason

Customer
CustomerPK
StartDateKeyValidity
Name
Gender
BirthDate
Profession
Qualification
City
Region

TypologyAge

TypologyAgePK
Typology
AgeRange

Date
DatePK
Month
Quarter
Year

Promotion
DatePK
StartDate
EndDate
PromoType
PromoValue
PromoMedium
PromoCost

Classification
DateFK
InitialCustomerKeyFK
TypologyAgeFK

Figure 4.16: Final version of the logical design

4.8 Summary

– Customer Relationship Management (CRM) is a business strategy that aims at the creation and con-
solidation of profitable relationships with specific customers by offering superior value and satisfac-
tion.

– CRM is grounded on high quality customer-related data, and is enabled by information technology, in
particular Business Intelligence techniques to get information about customer purchase behavior and
characteristics, customer buying preferences, and customer profitability, in order to develop strategies
to retain the top high-value customers, and to expand relationships with all customers.

– Analytical CRM is considered an essential component of the CRM framework, and the design of a
data warehouse is one of the key factors in successfully implementing Analytical CRM.

– Examples of typical Analytical CRM business questions have been considered to show their impact
on the design of a data warehouse starter model to support them (customer profitability, customer
retention, customer attrition, product profitability, returns analysis, order delivery performance). Data
analysis allows to retrieve data that fulfill certain criteria to use then to discovery useful models of
data with Data Mining algorithms. The models are high-level, actionable summaries of data (decision
rules, clustering, association rules, etc.) that describes large set of data in understandable way, and it
would be difficult to discover the same information off a data analysis result.

– Finally, as usually happens, it has been shown how the process of data warehousing is not a trivial
task.

Part II

Multidimensional Analysis

85

Chapter 5

DATA ANALYSIS

Once the data warehouse has been implemented, the final step is data analysis, that is to identify and to
develop a suite of reports showing how the information provided in these reports can be used by decision
makers to improve the business process modeled. Data analysis is usually done interactively with tools
that provide graphical interfaces to make the requests, which are then translated automatically into SQL
queries on the data warehouse. To facilitate the implementation of complex analysis, the SQL language
has been extended with new operators to group and aggregate data using several analytic functions.
Some of them will be presented with examples to show how to express in SQL basic OLAP operations
on multidimensional data.

5.1 OLAP Systems Solutions

When talking about systems for data analysis, terms are used such as OLAP, ROLAP, MOLAP, HOLAP,
DOLAP, OLAP Server, OLAP Services, etc., which can create problems of interpretation for the way they are
used by vendors of these types of products.

The term OLAP is used to refer to the activity of multidimensional analysis of large amounts of data,
with interactive and intuitive ways of changing the perspectives of analysis and moving to different levels
of synthesis of the detailed data.

An OLAP client provides graphical environments where the business users can click on actions and
perform drag-and-drop operations to provide input to summarize data. More experienced users can also
create complex queries with languages such SQL or MDX. An OLAP client interacts with the data
manager using one of the following solutions (Figure 5.1):

OLAP Client RDBMS
SQL API

(a)

OLAP Client OLAP Server RDBMS
OLAP API SQL API

(b)

OLAP Client Desktop OLAP
OLAP API

(c)

Figure 5.1: OLAP Systems Solutions

5.1. OLAP Systems Solutions 88

(a) The data warehouse is stored in a relational database system RDBMS (Data server) and the inter-
actions with the OLAP client occur in SQL. The benefit of this solution is that it uses a standard
technology usually already available. In the past the approach was not considered satisfactory for the
performance of RDBMS as systems for data warehouses and limitations of the SQL as an OLAP lan-
guage. But now the main producers of RDBMS systems have made them more and more specialized
for OLAP applications (OLAP-Aware RDBMS), aware of managing data warehouses with special
relational schemas (star, snowflake or constellation), dimensional hierarchies, specific storage struc-
tures, and materialized views (also called aggregates, MQT (materialized query tables), or summary
data).

(b) An OLAP client interacts with an OLAP server, a system that provides a multidimensional cube
vision of a data mart, which can be analyzed with the typical operations slice, dice, drill down, roll up,
pivot, etc. An OLAP server can be one of the following types:

– MOLAP (Multidimensional-OLAP), which stores in the local memory both the data cube, taken from
a Data server, and the aggregates of the extended cube (materialized views), using a special-
ized multidimensional arrays structure. A MOLAP server does not support SQL, but proprietary
languages not for business users, the most popular being MDX from Microsoft. The solution pro-
vides excellent performance, but is not suitable for large amounts of data. Examples of products
are Hyperion Essbase, Microsoft Analysis Services, Cognos PowerPlay and DB2 OLAP, using
Hyperion Essbase technology.

– ROLAP (Relational-OLAP), which stores both the data and the materialized views in the relational
Data server. ROLAP servers may also need to implement functionality not supported in the SQL
of the Data server, for example, analytic functions. Examples of products are Informatica, Mi-
croStrategy, Microsoft Analysis Services and SAP BW.

– HOLAP (Hybrid-OLAP), which combines ROLAP and MOLAP by splitting storage data in a MOLAP
and a relational Data server. Splitting the data can be done in different ways. One method is to
store the detailed data in the Data server, and precomputing aggregated data in MOLAP. Another
method is to store more recent aggregate data in MOLAP to provide faster access, and older aggre-
gates in the Data server. Microsoft Analysis Services is an example of product that can operate as
MOLAP, ROLAP or HOLAP.

Data update is usually done by batch, at predetermined time intervals. There are also systems capable
of doing proactive caching, updating MOLAP data incrementally at time intervals or after each trans-
action on an operational database. This permits the use of OLAP in real-time, or near real-time, useful
in certain contexts such as, for example, the stock market.
The requests of the OLAP client to the OLAP server are formulated in SQL or proprietary languages
such as MDX of SQL Server Analysis Services and OLAP DML of Oracle. The results are communicated
to the client in proprietary formats or in XML, for example using to the standard XMLA.

(c) The OLAP client interacts with a local DOLAP system (Desktop OLAP), which manages small amounts
of data extracted from the OLAP server, the Data server or an operational DBMS. The fact that a sub-
set of a data cube is transferred on a user’s machine makes it a good choice for those who travel and
move extensively, such as sales people, by using portable computers, or who do not regularly perform
such complex queries that a faster server is preferred to the speed of the client. The main product of
this type is Business Objects.
Among the DOLAP systems there are those specialized for interactive multidimensional analysis, with
some limitations as regards the functionalities of the OLAP server. For example, Business Objects
and MicroStrategy allows the definition of interactive reports with operations such as drill down and roll
up. The system does not maintain aggregates in the local memory, but only the results of recent op-
erations. The aggregates are calculated by the OLAP server, by the Data server or by the operational
DBMS.

In all the solutions, the metadata, with information on the structure of the fact table, dimensions and
hierarchies, are created and maintained by the OLAP or Data server and are imported from the OLAP

5.2. Data Analysis Using SQL 89

client using the standard CWM (Common Warehouse Metamodel) or proprietary formats.
Finally, in all the various solutions, the systems are supported by ETL (Extract, Transform, Load) tools

to load data from operational databases and other external sources.

5.2 Data Analysis Using SQL

In the following, several examples are presented to show how to write SQL queries to produce reports
for commonly asked business questions. The examples are based on the following table with attributes
without null values.

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Only in some cases will a graphical representation of the result also be shown, but this is, in general, es-
sential to make the results understandable and useful to those who need information for decision support,
the main motivation of the multidimensional analysis. Sometimes patterns can be seen in visual data that
cannot be seen in numerical data. All reporting tools allow us to perform both an analysis of data without
writing the query in SQL, and to produce a graphical representation of the result. Some DBMS, such as
Oracle, can produce a graphical representation of the result with analysis expressed in SQL too.

Some of the more commonly used business reports follow.

Simple Reports.
Many kinds of commonly requested business reports can be readily expressed as SQL queries.

– What were the total revenue and margin (in value terms and as a percentage of the revenue) of sales
for the month of January 2009, by brand and by product?

– What were the total revenue and margin (in value terms and as a percentage of the revenue) of sales
for the month of January 2009, by brand and by product, and the brand subtotals for all products?

Moderately Difficult Reports.
However, many other commonly requested reports cannot be expressed so easily. Reports that require
comparisons often challenge both the query writers and SQL itself.

– Revenues for 2009 by brand and product, with the percentage change from the previous year?
– How did product revenues in 2009 compare by geographic area, in a readable spreadsheet, or “cross-

tab”, format?
– Which suppliers charge the most for bulk tea products?
– What was the most successful promotion last December in Rome?

Very Difficult Reports Without Analytic SQL.
Reports that require sequential processing are very difficult to express as SQL queries, for example
deriving a simple running total. Data analysts typically run several queries with a program, then paste
the results together. This approach is awkward because it requires a sophisticated user.

The standard SQL analytic functions provide a better solution because they are easy to use, and perform
a broad range of calculations that execute quickly on the server.

– What were the cumulative totals (running totals) for Best coffee sales during each month of last year?
– What were the ratios of monthly sales to total sales (expressed as percentages) for Best coffee during

the same period?
– Which ten cities had the worst coffee sales in 2010 with regard to dollar sales and quantities sold?
– Which supermarket falls into the top 25% in terms of sales revenue for the first quarter of 2010?
– What products fell into the top 20%, middle 60%, and bottom 20% of sales margins totals for the

second week of 2011, at stores in the Center area?

5.3. Simple Reports with SQL 90

5.3 Simple Reports with SQL

A simple kind of query involves grouping and aggregation of the data.
To write such kind of SELECT the GROUP BY clause must be used with the following version of the

command syntax.

SELECT DISTINCT SA, SAF

FROM T
WHERE WC

GROUP BY GA

HAVING HC

ORDER BY OA;

where (a) SA are the SELECT attributes and SAF are the SELECT aggregation functions; (b) T are the
FROM tables; (c) WC is the WHERE condition; (d) GA are the grouping attributes, with SA ⊆ GA; (e) HC

is the HAVING condition with aggregation functions HAF ; (f) OA are the ORDER BY attributes; (g) the
DISTINCT , WHERE , HAVING and ORDER BY clauses are optional.

The command semantics with tables R and S, and all the optional clauses specified, in terms of the
extended relational algebra is shown in Figure 5.2.

ORDER BY OA

DISTINCT

SELECT SA, SAF

HAVING HC

GROUP BY GA

WHERE WC

FROM R, S

(a) SQL query

τOA

δ

πbSA ∪ SAF

σHC

GA
γ SAF ∪HAF

σWC

×

R S
(b) Logical query plan

Figure 5.2: SQL query with GROUP BY semantics

Figure 5.3 shows an example of the analysis report for “total revenue and margin (in value terms and as
a percentage of the revenue) of sales for the year 2009, by brand and by product.”

5.3. Simple Reports with SQL 91

Margin by Brand and by Product
Year 2009

Brand Product Revenue Margin Margin%
(¤) (¤) (%)

B1 P1 2 100 273 13
P2 3 720 624 17
P3 15 300 1 803 12

B2 P4 12 600 756 6
P5 22 500 2 196 10
P6 48 300 4 496 9

Figure 5.3: A Simple Report

The following query with a GROUP BY produces the desired result:1

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product
ORDER BY Brand, Product;

Note that the operations Slice and Dice are expressed by a selection and projection, while Roll-up and
Drill-down require a GROUP BY. For example, a roll-up on Brand, to find, for the year 2009, the total
revenue, total margin and margin percentage by Brand, is expressed with the following query:

SELECT Brand, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand
ORDER BY Brand;

while a drill-down on Customer, on the previous result, to find, for the year 2009, the total revenue, total
margin and margin percentage by Brand and Customer, is expressed with the following query:

SELECT Brand, Customer, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Customer
ORDER BY Brand, Customer;

In general, adding an attribute to the GROUP BY and SELECT, a drill-down is made, while dropping an
attribute, a roll-up is made.

1. In all the examples in this chapter, the SQL queries produce the data needed for reports, but not their graphic representation.
The YEAR, QUARTER, MONTH functions retrieve subfields from DATE values.

5.3. Simple Reports with SQL 92

5.3.1 The Operator ROLLUP

Many OLAP queries use a GROUP BY to partition data into groups that are reduced to a single row of
aggregates and grouping columns. However, standard SQL limit the types of OLAP queries that can
be easily expressed. One extension is the ROLLUP clause. Suppose that we want to obtain the report of
Figure 5.4. Any report that contains a metric is likely to contain a “total” at the end. If the report has
more than one dimensional attribute, the metric may also be subtotaled.

Margin by Brand and by Product
Year 2009

Brand Product Revenue Margin Margin%
(¤) (¤) (%)

B1 P1 2 100 273 13
P2 3 720 624 17
P3 15 300 1 803 12

B1 Total 21 120 2 700 13

B2 P4 12 600 756 6
P5 22 500 2 196 10
P6 48 300 4 496 9

B2 Total 83 400 7 448 9

Total 104 520 10 148 10

Figure 5.4: A report with some subtotals

A possible solution with standard SQL would be:

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product

UNION ALL

SELECT Brand, NULL AS Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand

UNION ALL

SELECT NULL AS Brand, NULL AS Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
ORDER BY Brand, Product;

Three statements are required because the report requires three aggregations applied to groups of values
produced by a different GROUP BY clause. Computing all of these queries independently is time con-
suming, and this is the main motivation for the ROLLUP clause which is included in the SQL of several

5.3. Simple Reports with SQL 93

DBMSs:

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP (Brand, Product)
ORDER BY Brand, Product;

� Definition 5.1 ROLLUP in SQL:1999
A ROLLUP group is an extension of the GROUP BY clause that produces a result that contains
subtotal records in addition to the regular grouped records, whose aggregate values are derived by
applying the same functions. A ROLLUP(A1, A2, . . . , An−1, An) group is equivalent to the union
of the n+ 1 grouping results on the attributes (A1, A2, . . . , An−1, An), (A1, A2, . . . , An−1), . . . ,
(A1, A2), (A1), and (). Notice that each grouping result is created by eliminating an attribute
from the list specified in the ROLLUP clause, by moving from right to left. Therefore, the order in
which the attributes are specified is significant for the ROLLUP result. The operator produces its
results with just one table access.

For example, the rows of the table in Figure 5.4 are calculated first grouping on Brand, Product, and then
the subtotals are calculated progressively moving from right to left through the list of grouping columns:
first grouping on Brand, and then on () (super-aggregate rows).

5.3.2 The Operator CUBE

Suppose now that we want to obtain a table such as that in Figure 5.5, similar to the table in Figure 5.4
except that, in addition, it has totals for each row and each column.

Margin by Brand and by Product
Year 2009

Brand Product Revenue Margin Margin%
(¤) (¤) (%)

B1 P1 2 100 273 13
P2 3 720 624 17
P3 15 300 1 803 12

Total B1 21 120 2 700 13

B2 P4 12 600 756 6
P5 22 500 2 196 10
P6 48 300 4 496 9

Total B2 83 400 7 448 9

Total P1 2 100 273 13
Total P2 3 720 624 17
Total P3 15 300 1 803 12
Total P4 12 600 756 6
Total P5 22 500 2 196 10
Total P6 48 300 4 496 9

Total 104 520 10 148 10

Figure 5.5: Report with subtotals

5.3. Simple Reports with SQL 94

Again, computing all of these queries independently is time consuming, and this is the main motivation
for the CUBE clause which is included in the SQL of several DBMSs:

SELECT Brand, Product, SUM(Revenue) AS Revenue,
SUM(Margin) AS Margin,
ROUND(100∗SUM(Margin)/SUM(Revenue)) AS Margin%

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY CUBE (Brand, Product)
ORDER BY Brand, Product;

� Definition 5.2 CUBE in SQL:1999
A CUBE group is an extension of the GROUP BY clause that produces a result that contains subtotal
records in addition to the regular grouped records, whose aggregate values are derived by applying
the same functions. A CUBE (A1, A2, . . . , An−1, An) group is equivalent to the union of the 2n

grouping results on the attributes of all possible subsets of the attributes specified in the CUBE
clause. Unlike ROLLUP, the order in which the attributes are specified doesn’t matter for CUBE.
The operator produces its results with just one table access.

Some systems also provide the operator GROUPING SETS to group only for certain combinations of
attributes. For example, replacing in the previous query GROUP BY CUBE(Brand, Product) with GROUP BY
GROUPING SETS((Brand, Product), (Brand)) data are grouped only for the two combinations listed.

5.3.3 Observations

In general, in the GROUP BY clause both attributes and different ROLLUP and CUBE can be used. For
example, the following query

SELECT Date, Brand, Product, SUM(Revenue) AS Revenue
FROM Sales
GROUP BY Date, ROLLUP(Brand, Product);

generates the following groupings: (Date, Brand, Product), (Date, Brand) and (Date), but not (). The result
is justified by recalling that Date generates the set of groupings {(Date)}, ROLLUP generates the set of
groupings {(Brand, Product), (Brand), ()} and their combination generates the cartesian product of two
sets. The following query

SELECT Date, Brand, Product, SUM(Revenue) AS Revenue
FROM Sales
GROUP BY CUBE(Date), ROLLUP(Brand, Product);

generates the following groupings instead: (Date, Brand, Product), (Date, Brand), (Date), (Brand, Product),
(Brand) and ().

Usually, in relational systems when using operators ROLLUP and CUBE, the result shows the value NULL
to indicate a running total, creating ambiguity because the value might be present in the data and not a
result of the operators ROLLUP and CUBE. To correctly interpret the meaning of a record the function
GROUPING is used with an attribute parameter in the GROUP BY: the function returns 1 if the value NULL
has been created by ROLLUP or CUBE, and returns 0 otherwise. For example, the result of the query

SELECT Brand, Product, SUM(Revenue) AS Revenue,
GROUPING(Brand), GROUPING(Product)

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP(Brand, Product);

produces the result of the query without GROUPING, extended with two more columns that have the value
1 when the record has a field NULL, which corresponds to a total, as shown in Figure 5.6.

5.3. Simple Reports with SQL 95

Brand Product Revenue GROUPING GROUPING
(Brand) (Product)

B1 P1 2 100 0 0
B1 P2 3 720 0 0
B1 P3 15 300 0 0
B1 21 120 0 1
B2 P4 12 600 0 0
B2 P5 22 500 0 0
B2 P6 48 300 0 0
B2 83 400 0 1

104 520 1 1

Figure 5.6: Report with ROLLUP and GROUPING

To get the result without additional columns, but with the value Total when necessary, we write:

SELECT CASE WHEN GROUPING(Brand) = 1 THEN ’Total’ ELSE Brand
END AS Brand,
CASE WHEN GROUPING(Product) = 1 THEN ’Total’ ELSE Product
END AS Product,
SUM(Revenue) AS Revenue

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP(Brand, Product);

where, with the first CASE, if the value of Brand is a NULL, then the string Total will appear (any string
can be chosen). Otherwise, its actual value will appear, as shown in Figure 5.7.

Brand Product Revenue

B1 P1 2 100
B1 P2 3 720
B1 P3 15 300
B1 Total 21 120
B2 P4 12 600
B2 P5 22 500
B2 P6 48 300
B2 Total 83 400
Total Total 104 520

Figure 5.7: Displaying the ALL values with Total

The function GROUPING, like any other aggregate function, can be used in HAVING to select only some
of the records produced by ROLLUP or CUBE. For example, the following query finds only the record
with totals:

SELECT CASE WHEN GROUPING(Brand) = 1 THEN ’Total’ ELSE Brand
END AS Brand,
CASE WHEN GROUPING(Product) = 1 THEN ’Total’ ELSE Product
END AS Product,
SUM(Revenue) AS Revenue

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY ROLLUP (Brand, Product)
HAVING GROUPING(Brand) = 1 OR GROUPING(Product) = 1;

5.4. Moderately Difficult Reports with SQL 96

5.4 Moderately Difficult Reports with SQL

Let us show examples of queries to present results in a spreadsheet-type cross-tab format, rather than the
form of lists of values, or to produce reports with metrics to be calculated by comparison with others.

Example 5.1
Let us produce a report with the total revenue in 2009 by product and by geographical areas. The
following simple SQL query

SELECT Product, Area, SUM(Revenue) AS TotalRevenue
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Product, Area
ORDER BY Product, Area;

produces a vertically ordered result set that makes it difficult to compare the revenues by product
and by geographical area.

Total Revenue
by Product and by Geographical area

Year 2009

Product Area Revenue

P1 Center 600
P1 Islands 300
P1 North 900
P1 South 300
P2 Center 1 200
P2 Islands 360
P2 North 1 800
P2 South 360
P3 Center 4 680
P3 Islands 1 980
P3 North 7 020
P3 South 1 620
P4 Center 3 600
P4 Islands 1 800
P4 North 5 400
P4 South 1 800
P5 Center 6 300
P5 Islands 3 150
P5 North 9 450
P5 South 3 600
P6 Center 15 000
P6 Islands 5 100
P6 North 22 500
P6 South 5 700

This kind of data is much easier to compare when it is formatted like a spreadsheet-type cross-tab
or pivot table:

5.4. Moderately Difficult Reports with SQL 97

Comparison between Revenues
by Product and by Area

Year 2009

Product North Center South Islands

P1 900 600 300 300
P2 1 800 1 200 360 360
P3 7 020 4 680 1 620 1 980
P4 5 400 3 600 1 800 1 800
P5 9 450 6 300 3 600 3 150
P6 22 500 15 000 5 700 5 100

The result is obtained by grouping the data by Product and by using in the SELECT the aggregate
function SUM with argument a CASE expression:

SELECT Product,
SUM(CASE

WHEN Area = ’North’ THEN Revenue ELSE 0 END) AS North,
SUM(CASE

WHEN Area = ’Center’ THEN Revenue ELSE 0 END) AS Center,
SUM(CASE

WHEN Area = ’South’ THEN Revenue ELSE 0 END) AS South,
SUM(CASE

WHEN Area = ’Islands’ THEN Revenue ELSE 0 END) AS Islands
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Product
ORDER BY Product;

DBMSs such as Oracle 11g and SQL Server 2005 provide an extension to SQL to create the cross-
tab with a PIVOT clause.

Figure 5.8 shows a graphical representation of product revenues by geographic area with multi-
ple groups of stacked bars, while Figure 5.9 shows another graphical representation often used to
show the percentage revenue mix of product by geographic area, but the SQL query to produce the
revenue percentage is more complex, and we will see later how to write it.

0

10000

20000

30000

40000

P1 P2 P3 P4 P5 P6

North Center South Islands

Figure 5.8: An example of a stacked bar report

5.4. Moderately Difficult Reports with SQL 98

North

Center

South

Islands

25% 50% 75% 100%

Figure 5.9: Another example of a stacked bar report

Example 5.2
Another very common type of analysis requires reports that compare data columns that re-
fer to different periods (variance report). For example, “Revenues for 2009 by brand and by
product, with the percentage change from the previous year (Delta = 100 × ((Revenue 2009 −
Revenue 2008)/Revenue 2009)”.

Comparison between Revenue by Brand and by Product
2009 – 2008

Brand Product Revenue (¤) Revenue (¤) Delta
2009 2008 (%)

B1 P1 2 100 13 560 −546
P2 3 720 23 640 −535
P3 15 300 20 340 −33

B2 P4 12 600 1 440 89
P5 22 500 2 100 91
P6 48 300 100

The annual revenues for 2009 and for 2008, by brand and by product, are obtained with the follow-
ing SQL queries:

Revenue09 = SELECT Brand, Product, SUM(Revenue) AS Revenue2009
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product ;

Revenue08 = SELECT Brand, Product, SUM(Revenue) AS Revenue2008
FROM Sales
WHERE YEAR(Date) = 2008
GROUP BY Brand, Product ;

If the same products were sold in both 2009 and 2008, the final result would be obtained with a
natural join of Revenue09 and Revenue08.

Instead, to take into account that not necessarily the same products were sold in both 2009 and
2008, the analysis in SQL requires a full join of Revenue09 and Revenue08.

5.4. Moderately Difficult Reports with SQL 99

SELECT Revenue09.Brand AS Brand, Revenue09.Product AS Product
, Revenue2009
, Revenue2008
, CASE

WHEN Revenue2009 IS NULL THEN −100
WHEN Revenue2008 IS NULL THEN 100
ELSE ROUND(100∗(Revenue2009 − Revenue2008) / Revenue2009)

END AS Delta
FROM (SELECT Brand, Product, SUM(Revenue) AS Revenue2009

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product

) AS Revenue09

FULL JOIN

(SELECT Brand, Product, SUM(Revenue) AS Revenue2008
FROM Sales
WHERE YEAR(Date) = 2008
GROUP BY Brand, Product

) AS Revenue08

USING (Brand, Product)
ORDER BY Brand, Product;

In Figure 5.10 there is shown a graphical representation of the result with a histogram, useful for
comparing metrics.

Another very useful graph is the comparison of revenues for the months of different years (Fig-
ure 5.11), calculated with an SQL query similar to the previous one.

Figure 5.10: The histogram of the revenues variation by product

5.4. Moderately Difficult Reports with SQL 100

Figure 5.11: The trend in revenues per month of different years

5.4.1 The WITH Clause in SQL

The above example shows how SQL queries for complex analysis generally require the use of subqueries
in the FROM clause, usually handled by relational systems as a temporary view definition. To make it
easier to understand these types of queries, it is useful to write them using the WITH clause to break down
complex queries with subqueries into simpler parts.

For example, the previous query is written as follows.

WITH Revenue09 AS
(SELECT Brand, Product, SUM(Revenue) AS Revenue2009

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Brand, Product

)
, Revenue08 AS
(SELECT Brand, Product, SUM(Revenue) AS Revenue2008

FROM Sales
WHERE YEAR(Date) = 2008
GROUP BY Brand, Product

)

SELECT Revenue09.Brand AS Brand, Revenue09.Product AS Product
, Revenue2009
, Revenue2008
, CASE

WHEN Revenue2009 IS NULL THEN −100
WHEN Revenue2008 IS NULL THEN 100
ELSE ROUND(100∗(Revenue2009 − Revenue2008) / Revenue2009)

END AS Delta
FROM Revenue09 FULL JOIN Revenue08 USING (Brand, Product)
ORDER BY Brand, Product;

A temporary view defined with WITH can use one of the previous defined views or be recursive, if defined
with WITH RECURSIVE. Recursive queries are typically used to deal with hierarchical or tree-structured
fact tables. For example, suppose we have the relation

5.4. Moderately Difficult Reports with SQL 101

Flights
Code From To

10 MI PI
11 MI TO
12 MI RM
13 PI FI
14 TO RM
15 RM VE
16 NA BA
17 TO PA

The result of the query

WITH RECURSIVE
CitiesReachableFrom AS
(SELECT From, To

FROM Flights
UNION

SELECT Flights.From AS From, CitiesReachableFrom.To AS To
FROM Flights, CitiesReachableFrom
WHERE Flights.To = CitiesReachableFrom.From

)

SELECT ∗
FROM CitiesReachableFrom
WHERE From = ’MI’;

is a relation with pairs of cities reachable from Milano by taking one or more flights.

From To

MI PI
MI TO
MI RM
MI FI
MI VE
MI PA

The definition of the SQL temporary recursive view CitiesReachableFrom has the structure BasisSelect
UNION RecursiveSelect, with a linear recursion, that is the FROM of the RecursiveSelect contains one
occurrence only of the temporary recursive view. The FinalSelect of the WITH clause is executed with the
CitiesReachableFrom relation value that might be computed as follows:

1) CitiesReachableFrom := BasisSelect;
2) WHILE (changes to CitiesReachableFrom) DO
3) CitiesReachableFrom := CitiesReachableFrom UNION RecursiveSelect;

CitiesReachableFrom is initially empty and with rule (1) its records become those of the BasisSelect, the
cities reachable with direct flights, because the RecursiveSelect produces an empty relation.

On the next iteration, with rule (3) possible, other cities reachable with more flights are added to the
relation RecursiveSelect. If the new value is equal to the previous one, the final result has been obtained
and the loop ends. Otherwise, the value obtained is used to find other cities reachable.

The FinalSelect is executed with the final value of CitiesReachableFrom and the result is the subset of
records with From = ’MI’.

5.5. Very Difficult Reports Without Analytic SQL 102

5.5 Very Difficult Reports Without Analytic SQL

The SQL has been extended to allow the use of several analytic functions, also known as Windows
Functions, to use them in new ways in order to facilitate the development of complex data analysis.

A SELECT, for simplicity with a single analytic function, without DISTINCT, with a fact table and one
dimensional table only, has the following structure:

SELECT Select Attributes (SA), Select Aggregation Functions (SAF),
Analytic Function (AF) OVER(

[PARTITION BY <attribute list>]
[ORDER BY <sort attribute list>
[<window clause>]])

FROM Fact table (F) and a dimension table (D1)
WHERE Where condition (WC)
GROUP BY Grouping Attributes (GA)
HAVING Having condition (HC) with aggregation functions (HAF)
ORDER BY Sorting attributes (OA);

The command semantics in terms of the extended relational algebra is shown in Figure 5.12.

ORDER BY OA

SELECT SA, SAF ,

AF OVER (. . .)

HAVING HC

GROUP BY GA

WHERE WC

FROM F, D1

(a) SQL query

τOA

πbSA ∪ SAF ∪AF

GA
ΩSAF ∪AF

σHC

GA
γ SAF ∪HAF

σWC

×

F D1
(b) Logical query plan

Figure 5.12: Analytic SQL query semantics

The query is processed in the following steps:

1. Perform the operations specified in FROM, WHERE, GROUP BY and HAVING clauses to compute the
set of records resulting from the subtree rooted at σHC

.
2. Apply the specified analytic functions to the result of the subtree rooted at σHC

, to produce a new
set of record that differs from the previous ones only for new attributes calculated using the analytic
functions.

3. Apply any projection, and then the ORDER BY to produce the query result.

The analytic functions can be used only in SELECT, with the OVER clause, and usually they are applied to
the entire set of records produced in the first phase, but may also be applied separately to disjoint subsets
obtained by partitioning the records by the value of an expression defined on the attributes of the record

5.5. Very Difficult Reports Without Analytic SQL 103

(option PARTITION BY). The aggregate functions can also be applied to non-disjoint subsets of records in
a partition defined by the notion of moving window: for each record r of a partition, aggregate functions
apply to the data identified by a “window” placed on r. They are useful for analysis of data, such as:
“What is the moving average of weekly sales?”.

The result of the traditional aggregate functions SUM, COUNT, AVG, MIN, MAX does not depend on the
order of records in the collection on which they operate. Instead, the result of the new analytic functions,
which we will see that later on, may depend on the order of the data specified with the ORDER BY clause
in the OVER of the SELECT.

The partitioning operation is like that for the calculation of a GROUP BY, but PARTITION BY does not
produce a record for each group as with the GROUP BY, but rather produces as many records as there
are elements of the group, which will then be extended with new attributes calculated using the analytic
functions. When the PARTITION BY clause is not present, the set of records behaves as a single group.

Figure 5.13 shows the main analytic functions available in some DBMS.

Function Oracle DB2 SQL Server PostgreSQL MySQL

COVAR POP x x x x
CUBE x x x
CUME DIST x x x
DENSE RANK x x x x
LAG, LEAD x x x x
NTILE x x x x x
PERCENT RANK x x
RANK x x x x
RATIO TO REPORT x x
REGR Functions x x x
ROLLUP x x x x
ROW NUMBER x x x x
STDDEV POP x x x x x
VAR POP x x x x x
Window Clause x x x

Figure 5.13: Analytic SQL in some DBMS

5.5.1 Premise

Note the difference between the result of a query with an aggregate function, and the traditional GROUP
BY, and an analytic function.

Let us consider the relation

R
P . . .

P1 . . .
P1 . . .
P2 . . .
P2 . . .
P2 . . .
P2 . . .
P2 . . .

The query

SELECT P, COUNT(∗) AS No
FROM R
GROUP BY P;

5.5. Very Difficult Reports Without Analytic SQL 104

returns the relation

P No

P1 2
P2 5

while the query

SELECT P,
COUNT(∗) OVER (PARTITION BY P) AS No

FROM R
ORDER BY P;

returns the relation

P No

P1 2
P1 2
P2 5
P2 5
P2 5
P2 5
P2 5

While the GROUP BY groups a set of records and a record for each group with two attributes is obtained –
with the value of the grouping attribute and the value of the aggregate function COUNT – with the analytic
function, for each record of the set the value of the aggregate function COUNT is computed when applied
to subsets obtained with the PARTITION.

If the query was without PARTITION, the analytic function would be applied to the whole record set:

SELECT P, COUNT(∗) OVER() AS No
FROM R
ORDER BY P;

to get the table

P No

P1 7
P1 7
P2 7
P2 7
P2 7
P2 7
P2 7

Compare this result with that of

5.5. Very Difficult Reports Without Analytic SQL 105

SELECT COUNT(∗) AS No
FROM R

No

7

The next example shows the usefulness of the OVER clause to solve a nontrivial problem left unresolved
in a previous example.

Example 5.3
Let us reconsider the example of the report with the total sales revenue in 2009, by product and by
geographical area:

Total revenue
by Product and by Geographical area

Year 2009

Product North Center South Islands

P1 900 600 300 300
P2 1 800 1 200 360 360
P3 7 020 4 680 1 620 1 980
P4 5 400 3 600 1 800 1 800
P5 9 450 6 300 3 600 3 150
P6 22 500 15 000 5 700 5 100

to change it by replacing the total revenue by product and by geographical area, with the revenue
percentage of total revenue for the area.

Percentage of total revenue by area
by Product and by Geographical area

Year 2009

Product PctNorth PctCenter PctSouth PctIslands

P1 2 2 2 2
P2 4 4 3 3
P3 15 15 12 16
P4 11 11 13 14
P5 20 20 27 25
P6 48 48 43 40

The result is obtained with the query

5.5. Very Difficult Reports Without Analytic SQL 106

SELECT Product
, ROUND(100∗SUM(CASE

WHEN Area = ’North’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’North’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctNorth

, ROUND(100∗SUM(CASE
WHEN Area = ’Center’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’Center’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctCenter,

, ROUND(100∗SUM(CASE
WHEN Area = ’South’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’South’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctSouth

, ROUND(100∗SUM(CASE
WHEN Area = ’Islands’
THEN Revenue ELSE 0 END)

/ SUM(SUM(CASE
WHEN Area = ’Islands’
THEN Revenue ELSE 0 END))

OVER ()
) AS PctIslands

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Product
ORDER BY Product;

GROUP BY with CASE
We have seen how the construct CASE is useful in the SELECT for certain analyses, and other examples
will be seen later. Let us see how it can also be useful in the GROUP BY, for grouping the data of a report
not on the values of certain attributes, but on values calculated from those of other attributes.

Let us consider the relation

S
P Prc . . .

P1 10 . . .
P2 20 . . .
P3 30 . . .
P4 40 . . .
P5 50 . . .
P6 60 . . .
P7 70 . . .

5.5. Very Difficult Reports Without Analytic SQL 107

Suppose we want a report to display the products classified in 3 categories: Cheap (Prc ≤ 20), Medium
(20 < Prc ≤ 50) e Expensive (50 < Prc ≤ 100).

P Prc Category

P1 10 Cheap
P2 20 Cheap
P3 30 Medium
P4 40 Medium
P5 50 Medium
P6 60 Expensive
P7 70 Expensive

The result is obtained with the query

SELECT P, Prc
, CASE

WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Pz <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
FROM S;

Now suppose we want a report showing the average price of products by category.

Category AvgPrice

Cheap 15
Medium 40
Expensive 65

WITH CategoryAndPrice AS
(SELECT CASE

WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
, Price

FROM S)
SELECT Category, AVG(Price) AS AvgPrice
FROM CategoryAndPrice
GROUP BY Category
ORDER BY AvgPrice;

Without the WITH the query becomes

SELECT CASE
WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
, AVG(Prc) AS AvgPrice

FROM S
GROUP BY CASE

WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END ORDER BY AvgPrice;

5.5. Very Difficult Reports Without Analytic SQL 108

The query must be written with two syntactically equal CASE expressions, one in the GROUP BY and
another in the SELECT.

Some relational systems, such as PostgreSql, allow the use in the GROUP BY of the CASE expression
label in the SELECT to avoid rewriting the expression in the GROUP BY and, therefore, the query can be
written as

SELECT CASE
WHEN Prc <= 20 THEN ’Cheap’
WHEN Prc > 20 AND Prc <= 50 THEN ’Medium’
ELSE ’Expensive’

END AS Category
, AVG(Prc) AS AvgPrice

FROM S
GROUP BY Category
ORDER BY AvgPrice;

We shall see later the use of GROUP BY with CASE in a case of more complex analysis.

5.5.2 Analytic Functions with the Use of Partitions

RANK and DENSE RANK
These functions are used to sort the records out in a set based on the value of an attribute or of an
expression (aggregate function), and to assign to each record its position (rank) in the set. The standard
record order is ascending, and so the records with rank 1 have the minimum value of the attribute, but
the descending order can be specified. The result is sorted by the rank value, unless otherwise specified.
A ranking function is specified in the SELECT clause with the following syntax:

<RankFunction>()
OVER(

[PARTITION BY <attribute list>]
ORDER BY <sort attribute list>

) [AS Ide]

RANK and DENSE RANK require an ORDER BY clause, because to determine the values rank the data
must be ordered. If no partitioning is specified, the entire set of records composes a single partition.

The functions RANK and DENSE RANK produce different results when the values to be ranked are not
different. The rank of a value ai is defined as 1 plus the number of values that strictly precede ai. If k > 1
values are equal, they are assigned the same value rank p, and the next value has the rank p+k. Therefore
there will be a gap in the sequential rank numbering. Instead, with DENSE RANK there will be no gaps in
the sequential rank numbering, with ties being assigned the same rank. The rank of a value ai is defined
as 1 plus the number of distinct values that strictly precede ai. For example, the values in the ascending
order (10, 20, 20, 30, 30, 40) have the ranks (1, 2, 2, 4, 4, 6) and the dense ranks (1, 2, 2, 3, 3, 4).

Example 5.4
“Show for the year 2009, and the regions of Tuscany and Lazio, the total revenue by region and
product, the rank of the products for total revenue in each region and for total revenue.”

5.5. Very Difficult Reports Without Analytic SQL 109

Revenues and Ranks in the 2009
by Region and by Product

Region Product Total Product Rank Product Rank
Revenue by Region Global

Lazio P3 2880 3 4
P2 960 5 8
P4 2 700 4 5
P1 480 6 10
P5 4 800 2 2
P6 11 400 1 1

Toscana P1 120 6 12
P6 3 600 1 3
P3 1 800 2 6
P5 1 500 3 7
P4 900 4 9
P2 240 5 11

SELECT Region, Product
, SUM(Revenue) AS TotalRevenue
, RANK() OVER (PARTITION BY Region ORDER BY SUM(Revenue) DESC)

AS ProductRankByRegion
, RANK() OVER (ORDER BY SUM(Revenue) DESC)

AS ProductRankGlobal
FROM Sales
WHERE YEAR(Date) = 2009

AND Region IN (’Toscana’, ’Lazio’)
GROUP BY Region, Product
ORDER BY Region;

Example 5.5
“Show for the year 2009 total revenue, the rank and dense rank of total revenue for clients.”

Revenues, Rank and Dense Rank in the 2009
by Customer

Customer Total Customer Customer
Revenue Rank Dense Rank

C15 21 120 1 1
C03 13 650 2 2
C08 11 400 3 3
C09 9 240 4 4
C04 8 640 5 5
C11 7 560 6 6
C02 7 560 6 6
C12 7 200 8 7
C16 4 680 9 8
C14 4 200 10 9
C06 3 150 11 10
C10 2 520 12 11
C01 1 920 13 12
C13 1 680 14 13

5.5. Very Difficult Reports Without Analytic SQL 110

SELECT Customer
, SUM(Revenue) AS TotalRevenue
, RANK() OVER (ORDER BY SUM(Revenue) DESC)

AS CustomerRank
, DENSE RANK() OVER (ORDER BY SUM(Revenue) DESC)

AS CustomerDenseRank
FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY Customer
ORDER BY TotalRevenue DESC;

Example 5.6
The ranking functions can be used to find only the first N records with the value of higher or lower
ranks (TOP N, BOTTOM N): (a) there is the SELECT with the function of rank in the FROM clause
and then (b) an appropriate selection of the result of the external SELECT on the rank values. Let us
see an example.

“Show for the year 2009, and the Islands geographic area, the region and the customers with the
two highest revenues (TOP 2 customers).”

Top 2 customers in the islands
Year 2009

Region Customer Total Top 2
Revenue

Sardegna C15 2 640 1
Sicilia C11 1 080 1
Sicilia C04 1 080 1
Sardegna C03 1 560 2

WITH SalesWithRank AS
(SELECT Region, Customer

, SUM(Revenue) AS TotalRevenue
, RANK() OVER (PARTITION BY Region

ORDER BY SUM(Revenue) DESC)̇
AS Rank

FROM Sales
WHERE YEAR(Date) = 2009 AND Area = ’Islands’
GROUP BY Region, Customer

)

SELECT Region, Customer, TotalRevenue, Rank AS Top2
FROM SalesWithRank
WHERE Rank <= 2
ORDER BY Top2;

NTILE(n)
A set of sorted records is partitioned into n groups with the same number of records (plus or minus 1)
and the group number to which it belongs is assigned to each record.

5.5. Very Difficult Reports Without Analytic SQL 111

Example 5.7
Customers are divided into 4 groups on the basis of total revenue, and their rank is calculated in
each quartile.

Revenue and rank in quartiles
by 4 customer groups

Customer Total Quartile Rank by
Revenue Quartile

C03 22 890 1 1
C15 21 120 1 2
C08 16 440 1 3
C04 14 400 1 4
C02 12 600 2 1
C12 11 760 2 2
C09 9 240 2 3
C05 9 240 2 3
C16 9 240 3 1
C14 8 820 3 2
C11 7 560 3 3
C07 7 200 3 4
C01 4 800 4 1
C06 4 410 4 2
C13 3 360 4 3
C10 2 520 4 4

WITH CustomersQuartiles AS
(SELECT Customer, SUM(Revenue) AS TotalRevenue

, NTILE(4) OVER (ORDER BY SUM(Revenue) DESC)
AS Quartile

FROM Sales
GROUP BY Customer

)
SELECT Customer,TotalRevenue, Quartile

, RANK() OVER (PARTITION BY Quartile ORDER BY TotalRevenue DESC)
AS RankByQuartile

FROM CustomersQuartiles;

ROW NUMBER() and CUME DIST()
On a set of sorted records

– ROW NUMBER() assigns a sequence number to each record and
– CUME DIST() assigns a value between 0 and 1 to each record of a sorted set according to the number

of records that precede it. For a record r in a set with n elements sorted in increasing order, if k is
the number of records that precede it, the CUME DIST() of r is 0 < (k + 1)/n ≤ 1. To equal values
CUME DIST() assigns equal values.

5.5. Very Difficult Reports Without Analytic SQL 112

Example 5.8
Consider the customers ordered by the sum of all their purchases (sales revenue) in descending
order.

1. We want to see if the Pareto rule holds: 80 percent of revenue comes from 20 percent of cus-
tomers. These customers are important because the business depends on their loyalty. In partic-
ular, of the Top20% of customers, that is the 20% of customers with the highest sales, we want to
know their name and the sales revenue, total revenue of all sales, their position n in the Top20%
and the percentage of the sum of their revenue compared to total revenue of all sales.

Customers Top20% by Revenue

Customer Revenue by Total n Percent of Percent of
Customer Revenue Total Revenue Running Totals

C03 22 890 165 600 1 14 6
C15 21 120 165 600 2 13 12
C08 16 440 165 600 3 10 19

WITH RowNumberCustomer AS
(SELECT Customer, SUM(Revenue) AS RevenueByCustomer

, SUM(SUM(Revenue)) OVER() AS TotalRevenue
, ROW NUMBER()

OVER(ORDER BY SUM(Revenue) DESC) AS n
FROM Sales
GROUP BY Customer ORDER BY RevenueByCustomer

)
, RowNumberCustomerExtended AS
(SELECT Customer, RevenueByCustomer, TotalRevenue, n

, ROUND(100∗RevenueByCustomer / TotalRevenue)
AS PercentOfTotalRevenue

, ROUND(100∗CUME DIST() OVER(ORDER BY n))
AS PercentOfRunningTotals

FROM RowNumberCustomer
)

SELECT ∗
FROM RowNumberCustomerExtended
WHERE PercentOfRunningTotals <= 20;

In this case the Pareto rule does not hold: only 37% of sales are related to 19% of the customers.
2. We want to partition the customers into four groups:

– Top5%, with 5% of customers with the highest amount of revenues.
– Next15%, with 15% of other customers with the highest amount of revenues.
– Middle30%, with 30% of other customers with the highest amount of revenues.
– Bottom50%, with 50 % of the other customers with the lowest amount of revenues.

For each customer group we want to know their number, and the percentage of the sum of their
revenues compared to total revenue of all sales.

5.5. Very Difficult Reports Without Analytic SQL 113

Customers by Revenue
Top5%, Next15%, Middle30% and Bottom50%

Group Number of Percent of
Customers TotalRevenue

Next15% 2 27
Middle30% 2 19
Bottom50% 12 55

WITH RowNumberCustomers AS
(SELECT Customer, SUM(Revenue) AS RevenueByCustomer

, SUM(SUM(Revenue)) OVER() AS TotalRevenue
, ROW NUMBER()

OVER (ORDER BY SUM(Revenue) DESC) AS n
FROM Sales
GROUP BY Customer

)
, RowNumberCustomersExtended AS
(SELECT Customer, RevenueByCustomer, TotalRevenue

, ROUND(100∗CUME DIST() OVER (ORDER BY n))
AS PercentOfCustomers

FROM RowNumberCustomers
)
, RowNumberCustomersExtendedWithGroup AS
(SELECT Customer, RevenueByCustomer, TotalRevenue

, (CASE
WHEN PercentOfCustomers <= 6

THEN ’Top6%’
WHEN PercentOfCustomers > 6 AND

PercentOfCustomers <= 14
THEN ’Next14%’

WHEN PercentOfCustomers > 14 AND
PercentOfCustomers <= 30
THEN ’Middle30%’

ELSE ’Bottom50%’ END
) AS Group

FROM RowNumberCustomersExtended
)

SELECT Group
, COUNT(Customer) AS NumberOfCustomers
, ROUND(100∗SUM(RevenueByCustomer) / TotalRevenue)

AS PercentOfTotalRevenue
FROM RowNumberCustomersExtendedWithGroup
GROUP BY Group, TotalRevenue
ORDER BY Group DESC;

5.5.3 Analytic Functions with the Use of Windows

For each record in a set, called the current record, a window can be defined on the data to determine the
record set ‘nearby’ to be taken into account for the calculation of the new fields to be added to the record.
The window size can be determined in a physical way (option ROWS), based on the number of records,
or in a logical way (option RANGE), using a condition usually based on an attribute of type DATE.

The current record of a set (or a partition) is both the one of reference for the calculation of an aggregate
function, and that for which the window size is defined by specifying the start and the end record, which

5.5. Very Difficult Reports Without Analytic SQL 114

can then change when the next current record is selected.

A window can include all records of the set on which it is defined, or include only the current record.
For example, to calculate a cumulative sum function, the first record is fixed and the end of the set moves
from first to last record, while to calculate a moving average both the first and last record move.

For each current record, the records of the specified window are considered, and with them the value
of an aggregate function is computed. The general format of the window clause is:

<AggregateFunction>(<expr>)
OVER(

[PARTITION BY <attribute list>]
[ORDER BY <sort attribute list>
[<ROWS or RANGE> <window size specification>]]

) [AS Ide]

Example 5.9
Consider the following table with the transactions data of bank accounts:

BankAccount(AccountNumber, TransactionDate, TransactionType)

We want to find the balance of the accounts sorted by date of transactions.

SELECT AccountNumber, TransactionDate, TransactionType
, SUM(TransactionType) OVER

(PARTITION BY AccountNumber ORDER BY TransactionDate
ROWS UNBOUNDED PRECEDING) AS Balance

FROM BankAccount
ORDER BY AccountNumber, TransactionDate;

where ROWS UNBOUNDED PRECEDING specifies that the window begins with the first record of the
partition and ends with the current record.

Account Transaction Transaction Balance
Number Date Type

1234 2009-11-01 113.00 113.00
1234 2009-11-05 −52.00 61.00
1234 2009-11-13 36.00 97.00
4321 2009-11-01 10.00 10.00
4321 2009-11-21 32.00 42.00
4321 2009-11-29 −5.00 37.00

Example 5.10
The cumulative total (running totals) is another piece of useful information to highlight the features
of the report data and to facilitate analysis. In the figure an example is shown to know about the
“cumulative monthly revenue by quarter (Quarter-to-Date) and year (Year-to-Date) for the product
P1 in 2009”.2

5.5. Very Difficult Reports Without Analytic SQL 115

Product P1 Revenue by Quarter and Month
Year 2009

Quarter Month Revenue Revenue QtoD Revenue YtoD
(¤) (¤) (¤)

Q1 January 16 500 16 500 16 500
Q1 February 14 220 30 720 30 720
Q1 March 27 480 58 200 58 200

Q2 April 7 920 7 920 66 120
Q2 May 1 200 9 120 67 320
Q2 June 1 260 10 380 68 580

Q3 July 5 400 5 400 73 980
Q3 August 11 730 17 130 85 710
Q3 September 10 860 27 990 96 570

Q4 October 5 850 5 850 102 420
Q4 November 2 100 7 950 104 520
Q4 December

SELECT Quarter Name(QUARTER(Date)) AS Quarter
, Month Name(MONTH(Date)) AS Month
, SUM(Revenue) AS Revenue
, SUM(SUM(Revenue)) OVER

(PARTITION BY QUARTER(Date)
ORDER BY MONTH(Date)

ROWS UNBOUNDED PRECEDING) AS RevenueQToD
, SUM(SUM(Revenue)) OVER

(ORDER BY MONTH(Date)
ROWS UNBOUNDED PRECEDING) AS RevenueYToD

FROM Sales
WHERE YEAR(Date) = 2009
GROUP BY QUARTER(Date), MONTH(Date)
ORDER BY Quarter, Month;

Finally, an example is given of a moving window with a size defined in a physical way. Assuming that
the total revenues from product sales vary greatly during the year, their values do not make a clear global
trend, but it might be useful to know how to predict future revenues. For this reason, an interesting report
is the one that shows a moving average of total revenues over three months – the current one, the one that
precedes it and the other that follows it.

SELECT MONTH(Date) AS Month
, ROUND(AVG(SUM(Revenue))

OVER (ORDER BY MONTH(Date)
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING), 2)

AS MovingAverageRevenue
FROM Sales
GROUP BY MONTH(Date)
ORDER BY Month;

In Oracle, when you define a query in analytic SQL you can choose to display a graphical representation
of the result. For example, Figure 5.14 shows the trends of the moving average of total revenue, with a

2. To obtain a result with the names of the months and quarters, instead of their numbers, the following functions have been
defined in SQL: Quarter Name and Month Name.

5.5. Very Difficult Reports Without Analytic SQL 116

moving window of 3 or 5 months.

Moving average of total revenue with a moving window of 5 months

Moving average of total revenue with a moving window of 3 months

Figure 5.14: Two graphical representations of the moving average of total revenue by product and
month

5.6. Summary 117

5.6 Summary

– The main commercial solutions for OLAP systems have been presented. OLAP servers are implemented
using either a multidimensional storage engine (MOLAP), a relational DBMS engine (ROLAP) as the
backend, or a hybrid combination called HOLAP. Changes in the hardware technology will change
how the backend of large data warehouses are organized, and as cloud data services take root, more
changes are expected.

– The standard SQL language supports relatively simple data analysis, and so it has been extended with
new operators and analytic functions to allow complex data analysis.

– Data analysis in SQL is useful for understanding both the functionality of tools that provide graphical
interfaces to formulate the queries, and their limitations in expressive power.

5.6. Summary 118

Part III

Data Warehouse Systems: Storage,
Indexing and Query Evaluation

119

Chapter 6

STORAGE STRUCTURES AND STAR
QUERY PLANS

When there are a lot of data to analyze, the traditional DBMSs used for operational databases do not
provide the desired performance, but they must be extended to support data warehouses by providing
appropriate storage structures, and different techniques for star query optimization. Typical solutions are
presented using both traditional relational DBMS extended with new types of indexes, such as IBM’s
DB2 and Oracle, and to create new types of systems for data warehouses that store data in a different
way, by columns instead of by records, such as Sybase-IQ. In the next chapter it will be shown how to
revise the query optimizer to deal with star queries.

6.1 Indexes Overview

An index is a data structure that allows the DBMS to locate quickly particular records of a table. An
index in this context has a role similar to that of a book. The pages of a book are ordered, and to find
information about a particular subject, we use the index in the back of the book, in which we look up a
keyword to get the list of one or more pages on which the keyword appears. In a similar way, in the case
of the set of records of a table, to find a record with a given attribute value, we first look at the index
defined on the attribute to get the location of the records in the table, and then the records are retrieved.
As in the book index analogy, the index is ordered on the attribute values.

To simplify the presentation we will assume that records in a table are fixed in size, allocated on con-
secutive pages of a file, and are numbered sequentially, starting from 1. To retrieve the record numbered
n, it is easy to translate n into a file page number and a number that identifies the record within the page.
A record number will be called the Record Identifier, RID.

� Definition 6.1
Let R a table of records with an attribute A. An index I on A is a sorted table I(A,RID) on A,
with (Nrec(I) = Nrec(R)). An element of the index is a tuple (A := ai,RID := ri), where ai is
an attribute A value for a record, and ri is a reference (RID) to the corresponding record in R.

An index can be defined on a key attribute, on a non-key attribute or on a set of attributes. In the last
case, the index, called composite, contains an element for each combination of values of the attributes in
the table, and can be used to execute efficiently queries that specify a value for each of these attributes or
for a prefix of them.

Figure 6.1 shows two example of indexes on two attributes of the table R, the key K and a non-key
attribute A, assuming for simplicity that the RIDs are integers that represent the position of the record in
the table.

A typical implementation of an index is the inverted index organization defined as follows.

� Definition 6.2
An inverted index I on a non-key attribute A of a table R is a sorted collection of entries of the
form (ai, n, p1, p2, . . . , pn), where each values ai of A is followed by the number of records n
containing that value and the sorted RID list of these records (rid-list).

6.1. Indexes Overview 122

R
RID K A . . .

1 k5 d . . .
2 k3 b . . .
3 k7 a . . .
4 k6 c . . .
5 k2 b . . .
6 k4 g . . .
7 k1 c . . .

.

IdxK
K RID

k1 7
k2 5
k3 2
k4 6
k5 1
k6 4
k7 7
.

IdxA
A RID

a 3
b 2
b 5
c 4
c 7
d 1
g 6

.

Figure 6.1: Example of a table with two indexes

An inverted index on the attribute Quantity of the Sales table in Figure 6.2 is shown in Figure 6.3. An
inverted index is usually organized as a B+-tree, with the leaves containing the index entries.

Sales
RID Date Product City Quantity

1 20090102 P1 Lucca 2
2 20090102 P2 Carrara 8
3 20090103 P3 Firenze 5
4 20090103 P1 Arezzo 10
5 20090103 P1 Pisa 1
6 20090103 P4 Pisa 8
7 20090103 P2 Massa 5
8 20090104 P2 Massa 2
9 20090105 P4 Massa 2

10 20090103 P4 Livorno 5
11 20090103 P4 Lucca 8
12 20090106 P3 Lucca 5
13 20090106 P1 Pisa 8
14 20090106 P3 Pisa 8
15 20090106 P2 Firenze 1
16 20090106 P1 Firenze 8

Figure 6.2: Sales relation

Quantity n RID list

1 2 5, 15
2 3 1, 8, 9
5 4 3, 7, 10, 12
8 6 2, 6, 11, 13, 14, 16

10 1 4

Figure 6.3: An inverted index on Quantity

When the number of distinct values of an indexed attribute is small (i.e. the attribute is not selective), the
inverted lists are long and the indexes are not useful to retrieve data.

6.2. Special-Purpose Indexes 123

6.2 Special-Purpose Indexes

Besides traditional inverted indexes, let us see how the DBMS technology has been extended to support
data warehouses with two special kinds of indexes for drastically improving the analytic query perfor-
mances: bitmap indexes and join indexes.

6.2.1 Bitmap indexes

A bitmap is an alternative method of representing a rid-list of an index. Each index element has a bit
vector instead of a rid-list.

� Definition 6.3
A bitmap index I on a non-key attribute A of a table R, with N records, is a sorted collection of
entries of the form (ai, B), where each values ai of A is followed by a sequence of N bits, where
the jth bit is set to 1 if the record jth has the value ai for the attribute A. All other bits of the
bitmap B are set to 0.

Figure 6.4 shows the bitmap index for the example of Figure 6.3.

Sales
RID . . . Quantity

1 . . . 2
2 . . . 8
3 . . . 5
4 . . . 10
5 . . . 1
6 . . . 8
7 . . . 5
8 . . . 2
9 . . . 2

10 . . . 5
11 . . . 8
12 . . . 5
13 . . . 8
14 . . . 8
15 . . . 1
16 . . . 8

Bitmap index
1 2 5 8 10

0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
1 0 0 0 0
0 0 0 1 0

Figure 6.4: A bitmap index on Quantity

Using bitmaps might seem a huge waste of space, however bitmaps are easily compressed, so this is not
a major issue. With efficient hardware support for bitmap operations (AND, OR, XOR, NOT), a bitmap
index offers better access to answer queries such as “how many sales of product P1 have been made in
Pisa”, since the answer is found by counting the 1’s of one bit-wise AND of two bitmaps.

This kind of index can be declared with an SQL command such as:

CREATE BITMAP INDEX Name ON Table(Attribute);

Example 6.1
It is interesting to compare the memory occupied by an inverted index and a bitmap index defined
on the same attribute, stored with B+–tree, considering only the memory for the leaves, supposed
completely full.

The number of leaves of an inverted index is:

6.2. Special-Purpose Indexes 124

Nleaf = (Nkey × Lk +Nrec × LRID)/Dpag ≈ (Nrec × LRID)/Dpag

where Nkey is the number of distinct values of the attribute, Dpag is the leaves page size in byte, Lk
is a value attribute size in byte and LRID is the RID size in byte.

The number of leaves of a bitmap index is:

Nleaf = (Nkey × Lk +Nkey ×Nrec/8)/Dpag ≈ Nkey ×Nrec/(Dpag × 8)

For the approximations made, the number of leaves of a B+–tree index does not depend on Nkey,
while the number of leaves of a bitmap index increases linearly with Nkey.

20 40 60 80 100

20

40

60

80

100

Inverted index

Bitmap index

N key

N leaf

The two values are equal for Nkey = 8 × LRID (for LRID = 4 bytes, Nkey = 32), for lower values
theB+–tree index takes more memory, while for higher values a bitmap index takes more memory.

An interesting aspect is that although the binary vectors are generally very long, and with very
selective attributes (high values of Nkey) become scattered, i.e. a large number of bits will be zero,
they can be easily stored in a compressed form to reduce the memory requirements. For example,
the Oracle system, which uses such techniques, suggests using them if Nkey < Nrec/2.

6.2.2 Join indexes

Suppose we want to speed-up an equi-join between the primary key attribute of the dimension table D
and the foreign key attribute in the fact table F (D ./

Pk=Fk F). A join index is a pre-computed join that
is stored in a compact form, defined as follows [Valduriez, 1987].

� Definition 6.4
A join index is a set of ordered pairs of the form (d, f), where d is a RID of a record rd in D and
f is a RID of a record rf in F such that rd.Pk = rf .Fk (i.e. the two records join).

The join indexes are not usually used in relational DBMSs because of the cost of their updating for
insertion or deletion of records that join, while they are useful for data warehouses, where data are static,
to perform the typical operation of star join. Several solutions have been proposed, and let us see some
of them, using the following example of star schema:

1. F is the fact table with a measure M ,
2. D1 and D2 are dimensional tables with keys PkD1 and PkD2; the attributes of D1 start with the letter
A and those of D2 with the letter B,

3. FkD1 and FkD2 are the foreign keys in F for D1 and D2,

6.2. Special-Purpose Indexes 125

with the data in Figure 6.5, and the query

Q: SELECT M, A2, B3
FROM F, D1, D2
WHERE FkD1 = PkD1 AND FkD2 = PkD2
AND A1 = 10 AND B2 = 20;

F
RID FkD1 FkD2 M

1 v1 z1 150
2 v2 z1 300
3 v3 z2 400
4 v2 z2 200
5 v1 z2 90

.

D1
RID PkD1 A1 . . .

1 v1 20 . . .
2 v2 10 . . .
3 v3 10 . . .

.

D2
RID PkD2 B1 . . .

1 z1 10 . . .
2 z2 20 . . .
3 z3 20 . . .

.

Figure 6.5: Star schema data mart

Star Join Index
A star join index on a star schema is a multi-attribute join index between the dimension tables and the
fact table. Figure 6.6 shows the star join index on D1 and D2, and the fact table F .

StarJoinIndex
D1 D2 F

1 1 1
1 2 5
2 1 2
2 2 4
3 2 3

.

Figure 6.6: A star join index example

A star join index is the result of the following query (where the notation R.RID stands for the RID of a
record of R):

SELECT D1.RID, D2.RID, F.RID
FROM F, D1, D2
WHERE FkD1 = PkD1 AND FkD2 = PkD2;

This kind of index can be declared with an SQL command such as:

CREATE STAR INDEX JIonF ON F(FkD1, FkD2);

A star join index with k dimensional tables is not useful if the join with the fact table only uses a subset
of the dimensional tables that are not a prefix of (D1, . . . , Dk). For this reason it is usually better to
define only binary join indexes between the fact and dimensional tables.

Two common variations of star join indexes are used in data warehouse systems: bitmapped join index
and bitmapped foreign column join index.

Bitmapped Join Index
[O’Neil and Graefe, 1995] suggest (a) to use a binary join index for each binary join (Di ./ F), and (b)

6.2. Special-Purpose Indexes 126

for each RID d in Di, all records of the form (d, f) in the join index are replaced with a single record of
the form (d, bitmap for matching records in F). Here the bitmap has a 1 in the jth position if and only if
the jth record in F joins with the record in Di with the RID d (Figure 6.7).

JoinIndex
D1 F

1 1
1 5
2 2
2 4
3 3

.

BitmappedJoinIndex
D1 bitmap for F

1 10001. . .
2 01010. . .
3 00100. . .

.

Figure 6.7: Join indexes between D1 and F

Foreign Column Join Index
While a traditional index maps an attribute value of a table to the records with that value, a Foreign
Column Join Index, FCJI, maps an attribute value from a dimension table to the fact table records joining
with the dimension table records with that value (Figure 6.8). The net effect is to have a bitmap index on
a fact table F based on a dimensional attribute A, even if A is not an attribute of F . Using this index can
eliminate the need to join the tables.

A1-FCJI
A1 F

10 2
10 3
10 4
20 1
20 5
.

Figure 6.8: Foreign Column Join Index on A1

Combining this solution with that of bitmapped join index we have a bitmap index called a Bitmapped
Foreign Column Join Index, BMFCJI (Figure 6.9).

A1-BMFCJI
A1 F

10 01110. . .
20 10001. . .
.

Figure 6.9: A bitmapped foreign column join index on A1

Bitmapped Foreign Column Join Indexes were introduced in Oracle 9i, and called Bitmap Join Indexes.
The index is declared with the command:

CREATE BITMAP INDEX Name ON F(A1)
FROM F, D1
WHERE FkD1 = PkD1;

6.3. Physical Operators 127

Then the following query can be executed using the index without performing the join of F with D1:

Q: SELECT SUM(M)
FROM F, D1 WHERE FkD1 = PkD1 AND A1 = 10;

6.3 Physical Operators

Physical Operators for Inverted and Bitmap Indexes
To show possible uses of these indexes, will assume that the following physical operators are available
for the physical query plans:

1. Operators on relations:

TableAccess(O, R) where O is a relation with a column of RID. The operator result is a relation with
records of R with the RIDs in O.

2. Operators on bitmaps:

(a) BMAnd(OE , OI) returns the bitmap result of the AND of the OE and OI bitmaps;
(b) BMOr(OE , OI) returns the bitmap result of the OR of the OE and OI bitmaps;
(c) BMMinus(OE , OI) returns the bitmap result of the difference of the OE and OI bitmaps;
(d) BMNot(O) returns the bitmap result of the NOT of the O bitmap;
(e) BMCount(O, Ide) returns a relation with the attribute Ide and the value the number n of 1 in the O

bitmap;
(f) RIDFromBM(O) returns a relation with the attribute RID and the records RID with 1 in theO bitmap;
(g) BMFromRID(O) returns a bitmap of the records with RID in O, a relation with one column of RID;
(h) BMMerge(O) returns the bitmap result of the OR of the bitmap set in O.

3. Operators on inverted and bitmap indexes:

(a) RIDIndexFilter(Idx, ψ) returns a relation of records with the attribute RID. The values of the attribute
are the RIDs of the record in a relation with the values of the indexed attributes that satisfy the
condition ψ.

(b) BMIndexFilter(Idx, ψ) returns the bitmap result of the OR of the bitmaps of the records in a relation
with the values of the indexed attributes that satisfy the condition ψ.

(c) BMKeyIteration(OE ,OI) withOI a bitmap index on an atttributeAi andOE is a set of theAi values.
The operator returns the set of the index bitmaps associated with the Ai values in OE .

Example 6.2
Let R(A,B,C) be a relation with two bitmap indexes on B and C. Figure 6.10a shows a physical
query plan for the query

SELECT A
FROM R
WHERE B = 10 AND C = 5;

and Figure 6.10b shows a physical query plan for the query

SELECT COUNT(*) AS N
FROM R
WHERE B = 10 AND C = 5;

If the index on B is an inverted index, the physical plan for the previous query is shown in Fig-
ure 6.10c.

6.4. Star Query Plans 128

Project
({A})

TableAccess
(R)

RIDFromBM

BMAnd

BMIndexFilter
(IdxB, B = 10)

BMIndexFilter
(IdxC, C = 5)

(a)

BMCount
(N)

BMAnd

BMIndexFilter
(IdxB, B = 10)

BMIndexFilter
(IdxC, C = 5)

(b)

BMCount
(N)

BMAnd

BMFromRid

RIDIndexFilter
(IdxB, B = 10)

BMIndexFilter
(IdxC, C = 5)

(c)

Figure 6.10: Physical query plans with bitmap indexes

Physical Operators for Join Indexes
To show possible uses of the join indexes, we assume that the following physical operators are available
for the physical query plans, even if it is not required that a specific system has to support all of them.

1. BMJIndexFilter(JIdx, ψ) returns the bitmap of the records in a fact table F using the Bitmapped Join
Index JIdx(Di, F) that satisfy the condition ψ = (Di = RID) on the attribute Di.

2. BMFCJIndexFilter(FCJIdx, ψ) returns the bitmap result of the OR of the bitmaps of the records in a fact
table F using the Foreign Column Join Index FCJIdx(Ai, F) that satisfy the condition ψ = (Ai θ c)
on the dimensional attribute Ai.

6.4 Star Query Plans

Star queries are the most common kind of queries in data warehousing, OLAP and business intelligence
applications. Thus, there is an imperative need for efficiently processing this kind of queries.

� Definition 6.5
A star query is an equi-join between a fact table and some of dimension tables of a star schema,
usually subject to selection conditions, and the result is further grouped and aggregated. Each
dimension tables is joined with the fact table using primary key-foreign key equality conditions.

The major bottleneck in evaluating star queries is the join of the fact table, usually very large, with the
dimensional tables.

For the sake of simplicity, we will assume that the star query is a single SELECT with GROUP BY,
HAVING and aggregate functions, but without DISTINCT, subqueries and ORDER BY.

A star query is executed with a different algorithm by a standard relational DBMS and by a DBMS
specialized for data warehouses. In the following, we present first the basic phases for evaluating star
queries in the two DBMS types, and then examples of processing algorithms expressed as physical query
plan will be shown.

Standard physical query plan
A query plan is produced using the query optimization techniques typically applied in a relational DBMS
which computes the query result with the following basic phases:

1. Selection. The local selections are applied to the fact table and to the dimensional tables.

6.4. Star Query Plans 129

2. Join. Using the best join physical operators available (e.g., IndexNestedLoop, MergeJoin, HashJoin),
the fact table, or the intermediate results table, is joined with the dimensional tables.

3. Result. The result of the joins is grouped and aggregated according to the attributes of the GROUP BY
clause, the groups are then further filtered and projected to produce the query result.

Example 6.3
Let us consider the SQL query:

SELECT FkD1, FkD2, SUM(M), RANK() OVER (ORDER BY SUM(M)) AS Rank
FROM F, D1, D2
WHERE FkD1 = PkD1 AND FkD2 = PkD2 AND A1 = 10 AND B2 = 20
GROUP BY FkD1, FkD2
HAVING COUNT(∗) > 0;

Let us assume that inverted indexes exist on the foreign keys of the fact table, on the primary keys
of the dimensional tables, and on the dimensional attributes.
A possible physical query plan produced by a traditional relational system has the structure shown
in the figure. The records of a selection on a table are retrieved with the operator IndexFilter, the
records of a join are computed with the operator IndexNestedLoop, the records of the grouping are
computed with the operator HashGroupBy, and then the groups are filtered and processed to produce
the query result.

Project
({FkD1,FkD2,SUM(M),Rank})

Analytics
({FkD1, FkD2}, {SUM(M), COUNT(∗)}, {RANK() OVER (ORDER BY SUM(M)) AS Rank})

Filter
(COUNT(∗)>0)

HashGroupBy
({FkD1, FkD2}, {SUM(M), COUNT(∗)})

IndexNestedLoop
(FkD2=PkD2)

IndexNestedLoop
(PkD1=FkD1)

IndexFilter
(D1, IdxA1, A1=10)

IndexFilter
(F1, IdxFkD1, FkD1=PkD1)

Filter
(B2=20)

IndexFilter
(D2, IdxPkD2, PkD2=FkD2)

Star query plan
When bitmap indexes are available, a physical star query plan is produced using specialized optimiza-
tion techniques for data warehouses which compute the query result with the following basic phases
significantly different from the ones in the previous approach to execute a star query more efficiently
(Figure 6.11):

1. Selection. The local conditions are applied to the fact table and to each dimensional table that partic-
ipates in the join to compute the local rowsets. A local rowset is a bitmap representing the selected
records from a table: the n-th bit is 1 if the n-th record of the corresponding table satisfies the local
condition. The result of the phase is a set of rowsets that represent which records from each table are
candidates for inclusion in the join result.

2. Semi-join. Using a join index and the local rowsets, the global rowset is computed, which is a bitmap
representing the records from the fact table that belong to the star join. The algorithm to execute this

6.4. Star Query Plans 130

Sub
Plan

FactTable DimensionTables

Selections &
semi-joins ANDing

Fetch &
Re-joining

Finale

Sort
(Attributes)

Project
(GroupingAttributes, Aggregates, AnalyticFunctions)

Analytics
(GroupingAttributes, Aggregates, AnalyticFunctions)

Filter
(HavingCondition)

GroupBy
({GroupingAttributes}, {Aggregates})

JoinPhysicalOperator
(JoinPredicates)

TableAccess
(FactTable)

FactTable RIDs

DimensionTables

Figure 6.11: A star query evaluation strategy

phase depends on the kind of join index available.
3. Fetch&Re-joining. The qualifying fact table RIDs are computed from the global rowset and the cor-

responding records are retrieved with the operator TableAccess and joined with the dimension tables
records only if some dimensional attributes are needed by the grouping operator, or the aggregate
functions, to produce the final result.

4. Finale. The re-join result is grouped according to the attributes of the GROUP BY clause, and the
aggregate functions in the SELECT and HAVING clauses are computed. Finally, the groups are filtered
and processed to produce the query result.

Let us see some examples of physical query plans for a query without the GROUP BY. In the next chapter
we will see how to treat the general case and, in particular, the optimization of the grouping operator,
always present in the data analysis. The plans exploit the benefits of different types of bitmap indexes to
evaluate star query joins with significant performance gains.

Example 6.4
Let us consider the star join query

6.4. Star Query Plans 131

Q: SELECT M, A2, B3
FROM F, D1, D2
WHERE FkD1 = PkD1 AND FkD2 = PkD2
AND A1 = 10 AND B2 = 20;

and the physical query plans generated depending on the following cases of indexes available:

1. Bitmap indexes on the foreign keys of the fact table, inverted indexes on the primary keys of D1

and D2, and inverted indexes on the attributes D1.A1 and D2.B2

In this plan, the fact table records are retrieved with the operator TableAccess using the record
identifiers computed from the global rowset, obtained from a bitmap AND of two bitmaps gen-
erated by the BMMerge operators from the results of the physical trees underneath it. Each such
physical query plan consists of a BMKeyIteration operator which retrieves the dimensional pri-
mary key values from the external operand, which in this example is an indexed table access, and
for each such value, the BMKeyIteration operator retrieves the bitmap from the internal operand
bitmap index on a foreign key of the fact table.

After the relevant fact table records have been retrieved using the TableAccess operator, they are
joined with the dimension tables, to produce the query result with the following physical star
query plan.

Project
({M,A2,B3})

IndexNestedLoop
(FkD2=PkD2)

IndexNestedLoop
(FkD1=PkD1)

TableAccess
(F)

RIDFromBM

BMAnd

BMMerge

BMKeyIteration

Project
({PkD1})

IndexFilter
(D1, IdxA1, A1=10)

BMIndexFilter
(IdxD1F, FkD1 = PkD1)

BMMerge

BMKeyIteration

Project
({PkD2})

IndexFilter
(D2, IdxB2, B2=20)

BMIndexFilter
(IdxD2F, FkD2 = PkD2)

IndexFilter
(D1, IdxPkD1, PkD1=FkD1)

IndexFilter
(D2, IdxPkD2, PkD2=FkD2)

2. Bitmapped Join Index between D1, D2 and the fact table F , inverted indexes on the primary
keys of D1 and D2, and inverted indexes on the attributes D1.A1 and D2.B2 produce the query
result with the following physical star query plan.

6.4. Star Query Plans 132

Project
({M,A2,B3})

IndexNestedLoop
(FkD2=PkD2)

IndexNestedLoop
(FkD1=PkD1)

TableAccess
(F)

RIDFromBM

BMAnd

BMMerge

BMKeyIteration

RIDIndexFilter
(IdxA1, A1 = 10)

BMJIndexFilter
(IdxD1F, D1 = RID)

BMMerge

BMKeyIteration

RIDIndexFilter
(IdxB2, B2 = 20)

BMJIndexFilter
(IdxD2F, D2 = RID1)

IndexFilter
(D1, IdxPkD1, PkD1=FkD1)

IndexFilter
(D2, IdxPkD2, PkD2=FkD2)

3. Bitmapped Foreign Column Join Index on the attributes D1.A1 and D2.B2, and inverted indexes
on the primary keys of D1 and D2 produce the query result with the following physical star
query plan.

Project
({M,A2,B3})

IndexNestedLoop
(FkD2=PkD2)

IndexNestedLoop
(FkD1=PkD1)

TableAccess
(F)

RIDFromBM

BMAnd

BMFCJIndexFilter
(IdxD1F, A1 = 10)

BMFCJIndexFilter
(IdxD2F, B2 = 20)

IndexFilter
(D1, IdxPkD1, PkD1=FkD1)

IndexFilter
(D2, IdxPkD2, PkD2=FkD2)

Note that if in the SELECT of the query Q there are only attributes of F , the physical query plans
will not use the two physical operators IndexNestedLoop for the joins of the fact table F with the
dimensions D1 and D2. The re-join operators are used only when it is necessary to enrich the fact
table records with dimensional attributes required in the SELECT, GROUP BY, HAVING and ORDER
BY clauses.

For example, the query

SELECT SUM(M)
FROM F, D1, D2
WHERE FkD1 = PkD1 AND FkD2 = PkD2
AND A1 = 10 AND B2 = 20;

6.5. Column-Oriented Data Warehouse Systems 133

is executed with the following plan, without physical joins operators, if there are the Bitmapped
Foreign Column Join Indexes on A1 and B2.

HashGroupBy
({}, {SUM(M)})

TableAccess
(F)

RIDFromBM

BMAnd

BMFCJIndexFilter
(IdxD1F, A1 = 10)

BMFCJIndexFilter
(IdxD2F, B2 = 20)

6.5 Column-Oriented Data Warehouse Systems

The main commercial DBMSs are based on a row-oriented relational technology: a database table is
stored row-by-row in a set of physical pages. This solution is optimized for OLTP applications which
commonly access and update data on the granularity of a record. Relational DBMSs have subsequently
been extended with new kinds of indexes and new optimization techniques to improve query performance
of typical OLAP applications on data warehouses. The major players in the data warehouse commercial
arena (Oracle, DB2, SQL Server, and Teradata) adopt this approach because their systems are historically
focused on the large transactional database market and they prefer to maintain a single kind of system
for all the possible applications.

The phrase “One size fits all” has been used to refer to the fact that the traditional relational technology
has been used to support many data-centric applications with different features. However this strategy is
no longer applicable to OLAP applications that have the following main features:

– Queries are complex, interactive, unpredictable, and concern only a few attributes.
– Queries are read-only and usually require groupings of large data sets on few attributes to compute

several aggregation functions.

To improve the performance of a such kinds of queries over large, ever-increasing data sets, several au-
thors have demonstrated that an implementation based on a column-oriented storage system (also called
transposed file, projection indexes) can achieve substantial improvements in OLAP query performance.
The technique of transposed files was first proposed in the 1970s [Batory, 1979]. The first interesting pa-
per that motivated and presented the implementation of a DBMS based on transposed files was [Turner
et al., 1979]. The basic ideas of an approach adopted in the Sybase IQ product are discussed in [French,
1995], [French, 1997]. Another interesting project is Monet [Boncz and Kersten, 1999], [Boncz et al.,
2005].

A better performance for such kinds of DBMSs has been achieved by rethinking the way in which
relational DBMSs deal with the following aspects, which will be discussed in the next subsections: data
storage, database page size and data compression [French, 1995].

6.5.1 Data Storage

The idea of picking a simple but fundamental assumption underlying traditional relational DBMSs, to
change it and then reconsider all aspects of data management and query processing can lead to interesting
results. As far as data storage, the fundamental assumption to change has been the way tables are stored:
by columns rather than by rows (Figure 6.12).

6.5. Column-Oriented Data Warehouse Systems 134

Customers
Name Address Pk

N1 A1 CK1
N2 A2 CK2
N3 A3 CK3

Sales
Fk Qty Price

CK1 Q1 P1
CK2 Q2 P2
CK3 Q3 P3
CK3 Q4 P4

(a) Tables by rows

Name

N1
N2
N3

Address

A1 1
A2
A3

Pk

CK1
CK2
CK3

Fk

CK1
CK2
CK3
CK3

Qty

Q1
Q2
Q3
Q4

Price

P1
P2
P3
P4

Customers Columns Sales Columns

(b) Tables by columns

Figure 6.12: Storing tables by column rather than by rows

Relational DBMSs store tables by row because typical OLTP applications consist of queries that read and
update typically only a few records at time and so high performance is achieved by storing contiguous
records in disk pages. In contrast, typical OLAP applications consist of queries that read typically only
a few attributes of large amounts of historical data in order to partition them into several groups and
compute some aggregation functions. So high performance is achieved by storing contiguous values of a
single attribute in disk pages (Figure 6.13).

— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——

Disk page

(a) Table stored by rows

— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——
— – — ——

(b) Table stored by columns

Figure 6.13: Row store versus column store

As in traditional DBMSs there are a variety of different indexing methods that may be more or less
appropriate, depending on the circumstances, so in column-oriented systems the idea of changing the
way data are stored is not in itself enough to achieve the expected queries performances. A data column
(thinking of this as essentially an index) can be implemented in various ways, depending on the type of
data that it contains. In addition, other storage structures must be considered to speed up star queries. The
typical solutions are bitmap indexes on columns and a kind of join index for each foreign key column.
Figure 6.14 shows an example of a join index, a column which contains only the RID (position) of the
dimensional table. Assuming that each column has fixed length values different from null, a column
element is identified by its position, and a RID is an element position value.
In the literature the solutions of the following column-based data warehouse systems are presented:

– SDM. The system adopts the two kinds of storage structures shown in Figure 6.14, but each column

6.5. Column-Oriented Data Warehouse Systems 135

Name

N1
N2
N3

Address

A1 1
A2
A3

Pk

CK1
CK2
CK3

StoC

RID1
RID2
RID3
RID3

Fk

CK1
CK2
CK3
CK3

Qty

Q1
Q2
Q3
Q4

Price

P1
P2
P3
P4

Customers Columns Join Index Sales Columns

Figure 6.14: A join index example

has a pair of attributes (RID, Value) and there is an index on each column. Each column is stored
twice: one ordered on RID, the other ordered on the value. The RID data is necessary to reconstruct
a complete table record.
The join index is a table containing pairs of RIDs: the first is the RID of a fact table record, and the
second is the RID of a record of the dimensional table that joins with the fact table record [Copeland
and Khoshafian, 1985].

– Sybase IQ. The system adopts the two kinds of storage structures shown in Figure 6.14, and there is
a bitmapped index on each column.

– Curio. The system adopts the two kinds of storage structures shown in Figure 6.14. Indexes are not
used since it is assumed that an index is exactly what each column is. Thus the entire database is,
in effect, indexed simply by virtue of the fact that the storage is column-based [Datta et al., 1998],
[Datta et al., 1999].

– C-Store. The system does not store columns for the tables attributes, but rather a set of projections
of the facts table, of the dimensional tables or of the joins of the facts with dimensional tables. The
projections are like materialized views which are chosen to support a set of predefined queries. Each
projection generally contains more than one attribute and the same attribute can belong to more than
one projection. A projection can be ordered and in this case it also contains a field for the RID of
the record of the table covered. Projections are horizontally partitioned into one or more segments
identified by an identifier (SID). Join indexes are defined between partitions and they are a set of
pairs (SID, RID) [Stonebraker et al., 2005]. The Vertica (Hewlett-Parckard) system is the commercial
version of C-Store.

– SADAS. The system is the result of an industrial research project which began in March 2003 and was
partially sponsored by the Italian Ministry of Education, University and Research (MIUR) to support
the cooperation of universities and industries in prototyping innovative systems. The main contractor
was the Italian software company Advanced Systems, based in Naples. Already in the early 1980s,
Advanced Systems had been a precursor in column oriented technology. SADAS is the first European
commercial DW system to adopt a column-oriented approach [Albano et al., 2006].

6.5.2 Database Page Size

The database page size determines the amount of data that is written to and read from the disk, and so it
is a fundamental parameter that affects DBMS performance.

While OLTP applications work better with relatively small pages of some Kbyte, OLAP applications
work better with relatively large pages of tens of Kbyte. This is because to answer a typical OLTP
application query only a few records need to be read from the disk, while answering a typical OLAP
applications query involves a high percentage of data. Results from experiments suggest a page size of
64K.

6.5.3 Data Compression

It is well known that data compression in traditional DBMSs improves performance significantly: it
reduces disk space usage, seek times (the data are stored nearer to each other), transfer time (there is less

6.6. New DW Platforms 136

data to transfer), and it increases the buffer hit rate (a larger fraction of data fits in the buffer pool).
It is intuitive that data stored by columns are more compressible than data stored by rows, which results

in faster query response times. In fact data stored by rows generally do not compress very well because
the fields within a row are of different data types (5-10% compression is typical). Instead data stored
by columns offer higher compression ratios because all the values within a column are of the same data
type, especially when columns are sorted or their data have low information entropy (high data value
locality). Moreover, it is possible to use a variety of algorithms, as is most appropriate for the data type
of the column in question. Thus a column-based approach optimizes data compression as compared to
traditional relational databases (50% compression is typical).

6.6 New DW Platforms

Choosing the right DW technology is not an easy task. Operational expenditure (OPEX) costs increase
with traditional data warehouse systems for defining the right physical design and for tuning big DW
to get the solution to perform well. The following solutions can reduce or eliminate the need for data
indexing and storing pre-aggregated data.

– In-memory appliances.
SAP HANA has introduced the term: the system, also referred to as the SAP in-memory database,
uses a column-based storage in main memory.
Three developments in recent years have made in-memory appliances increasingly feasible: 64-bit
computing, multi-core servers and lower RAM prices.

– DW Appliances.
Essentially, it is a fully integrated stack of CPU, memory, storage, operating system, and RDBMS
software that is purpose-built and optimized for data warehousing and business intelligence work-
loads. It uses massive parallelism to optimize query processing. Ultimately, the vision of a DW ap-
pliance is to provide a self-managing, self-tuning, plug-and-play DB system that can be scaled out in
a modular, cost-effective manner.

According to Steve Norall1, architectural approaches to data warehouse appliances vary widely, and
the following four main points must be considered for assessing different vendors’ approaches.

First, most of the DW appliances replace traditional database kernels (e.g., Oracle, IBM DB2, and
Microsoft SQL Server) with their own optimized database kernel.

Second, the total cost and overall price-performance of the solution can be directly affected by the
underlying components.

Third, all vendors leverage some degree of parallelism to deliver the requisite performance and scal-
ability. End users understand whether the trade-offs are well-suited to their database workload.

Fourth, some appliances may be cost-prohibitive for smaller data warehousing deployments. More-
over, some solutions require users to purchase additional storage capacity in relatively large chunks
(sometimes greater than 10 TB). As a result, some appliances may be cost-prohibitive for smaller data
warehousing deployments.

6.7 Commercial Systems for Data Warehouses

The Gartner company in March 2014 published the report Magic Quadrant for Data Warehouse Database
Management Systems, which graphically shows a matrix that classifies 16 vendors of systems for data

1. A senior analyst with the Taneja Group research and consulting firm (www.taneja.com).

6.7. Commercial Systems for Data Warehouses 137

warehouses on the basis of two evaluation criteria (Figure 6.15).2

InfiniDB

Cloudera

MarkLogic

Infobright

Exasol

Kognitio

Actian
Pivotal

Amazon Web Services
1010data

Microsoft

SAP

Oracle
IBM

Teradata

HP

Completeness of vision

A
bi

lit
y

to
ex

ec
ut

e

Niche players Visionaries

Challengers Leaders

Figure 6.15: Commercial Systems for Data Warehouses

– Ability to Execute. This is a measure of the product and vendor quality, of the sales volume, and of
the customer’s level of satisfaction.

– Completeness of Vision. This is a measure of the ability of the vendor to satisfy the needs of current
and future customers.

The company specifies that the Magic Quadrant is a graphical representation of a marketplace of some
vendors in a given period according to Gartner’s analysis of the market with its own criteria. The company
does not visit any vendor, does not test any product or service included in the Magic Quadrant, and does
not suggest that customers select a vendor that will appear in the Leaders quadrant. The Magic Quadrant
is intended solely as a research tool and not as a specific guide to choosing a vendor. Gartner disclaims all
warranties, express or implied, with respect to this research, including any warranties of merchantability
and fitness for a particular purpose.

The following considerations, in a nutshell, were made about the analyzed products of the Leaders
quadrant.

– Teradata has been in the data warehouse business for more than 30 years, delivering only data ware-
house solutions that have always been a data warehouse appliance.

– Oracle, which prevails in the DBMS market, offers a solution for data warehousing, which, for quan-
tity of data over 5 TB, requires a highly skilled DBA for tuning of the system. Customers can choose
to build a custom warehouse, a certified configuration of Oracle products on Oracle-recommended
hardware or on a database appliance with support for both OLTP and OLAP database systems. Oracle
has announced in-memory columnar capability.

2. For the first time the Magic Quadrant consider also non-relational data management systems, such as Amazon Redshift,
Cloudera, MarkLogic and Kognitio.

6.8. Summary 138

– IBM offers stand-alone DBMS solutions, as well as the data warehouse appliance Netezza, now known
as the PureData System for Analytics, to support the combination of high speed multidimensional anal-
ysis and data mining.

– Microsoft offers SQL Server 2012, a reference architecture and the parallel data warehouse appliance
with storage options to support 5 TB or up to 12 TB of user data and includes tools to enable easy
integration of data from any source.

– SAP offers both SAP Sybase IQ and SAP Hana in-memory. Sybase IQ was the first column-oriented
DBMS for data warehouses, i.e. it store database tables by columns rather than by rows, as happens
in relational systems and other systems analyzed. SAP Sybase IQ is available as a stand-alone DBMS.
SAP Hana in-memory uses a column-based storage in main memory.

– HP offers Vertica, another example of a column-oriented DBMS for data warehouses.

6.8 Summary

– Analytical queries can be made more efficient with the use of special-purpose indexes such as bitmap
index, join index, bitmapped join index, and bitmapped foreign column join index.

– Optimizers for data warehouse systems generate particular physical plans for star queries, with a
structure different from that generated by conventional relational systems. Examples of different so-
lutions provided by two typical commercial systems have been shown: DB2 and Oracle.

– Several authors have demonstrated that, since a data warehouse system is query-intensive, an imple-
mentation based on a column-oriented storage system can achieve substantial improvements in OLAP
query performance.
To improve query performance of OLAP applications, besides the idea of changing the way data
are stored – using large page sizes, compression techniques and specialized storage structures – new
algorithms for generating physical query plans have been designed.

– New DW platforms, such as In-memory or DW Appliances provide cost-effective scalability and sim-
plify big data warehouse implementations. Other modern technologies, such as Hadoop clusters and
NoSQL databases, are also adopted for very big DW applications.

– The Gartner company periodically publishes a report, Magic Quadrant for Data Warehouse Database
Management Systems, through which it proposes a classification of the best vendors of systems for
data warehousing.

Chapter 7

MATERIALIZED VIEWS SELECTION

OLAP analysis requires the execution of statistical operations on large quantities of data, grouped by
different criteria, to be performed very quickly to avoid jeopardizing the interest of users in interactive
analysis of data from different perspectives. For this reason the systems for data warehouses include the
use of materialized views with which the results of some queries are stored that are then automatically
used to facilitate the execution of other more complex ones. After a presentation of issues to be resolved
using this technique, we present some algorithms for selecting views to materialize.

7.1 Introduction

In traditional DBMS views are used frequently for various reasons and in particular to simplify the
writing of complex SQL queries or to enable the writing of queries that are not expressible without the
use of views. The use of views is explicit in the queries that then, when it is possible, are automatically
rewritten by replacing the expression that defines the view. This approach increases the possibility of
optimizing the query and reducing the query execution time.

A commonly used technique to improve query execution time on large data warehouses is to material-
ize (precompute) the result of some queries, in particular those that require grouping and calculation of
aggregates. Also in this case a user query is rewritten to use materialized views, but, unlike the previous
case, this is done automatically by the optimizer, without the user knowing of the materialized views’
existence.

The use of materialized views requires the solution of three major problems:

1. The choice of views to materialize, and of the possible indexes on them. This is one of the most
important decisions in designing a data warehouse.

2. The choice of the materialized views to use by query rewrite, an optimization technique that trans-
forms a user query written in terms of basic tables into a semantically equivalent query that uses one
or more materialized views.

3. The choice of when to update the views to align them with changes made on the database tables used.

In the following we will focus on some algorithms for solving the first problem, then in another chapter
we shall see approaches for solving the second problem, while for the third we simply remember that
two types of solutions have been studied, such as those for replicated data management in distributed
databases:

– Immediate Update: When the reference tables are updated, the interested materialized views are up-
dated too.

– Deferred Update: When the reference tables are updated, the events are stored in a log file, and then
the views are updated in one of the following ways:

– Lazy Update: When the view is used.
– The views are updated periodically
– The views are updated after a fixed number of updates of the reference tables.

7.2. The Lattice of Views 140

The deferred update temporarily loses the alignment of views with the reference tables, but the problem
is not critical because of the nature of the data warehouse applications.

7.2 The Lattice of Views

Let us consider a fact table with three dimensions and one measure m, without dimensional attributes. Let
us assume that the business analyses are of the following types: Find the sum of the measure grouping
data by some dimensions. The possible queries differ only for the grouping attributes and have the
following structure in SQL:

SELECT <Grouping attributes>, SUM(m) AS m
FROM <Fact Table>
GROUP BY <Grouping attributes>;

With three dimensions the possible views can be partially ordered in the data warehouse lattice, as is
shown in Figure 7.1. The views are named using the abbreviations P for Product, S for Store, D for Date.

(P, D)

(P, S, D)

(D)

(S, D)

(P)

(P, S)

()

(S)

Figure 7.1: Lattice of possible views to materialize

The root node of the lattice represents the fact table, i.e. the grouping attributes are all the dimensions.
The bottom view has the grouping attributes set empty. Views in higher lattice levels have more grouping
attributes and are thus more detailed (hold data of finer granularity) than views in lower levels, which are
more specialized (hold data of coarser granularity).

The lattice of possible views has an interesting property: if a node view has been materialized, then it
can be used to compute the result of any query that groups only by a subset of the attributes view.1

Suppose now that we are interested in the execution of a set of queries (the workload) which, for
simplicity, coincides with the set of those defining the views of the lattice. To choose a set of views to
materialize in order to facilitate the execution of the workload there are three possibilities:

1. Materialize nothing: the only data stored in the data warehouse are those of the fact table, i.e. the data
associated with the lattice root, and therefore the result of each query can be computed from these
data with a cost that depends on the facts table cardinality.

2. Materialize all the views: the result of any possible query has been already computed and stored
as a materialized view, and so the best query response times are achieved. Obviously, the memory
space occupied by all materialized views becomes very high in the presence of many data and many
dimensions.

1. This is possible because of the assumption that the only aggregation function is the sum, which is distributive.

7.2. The Lattice of Views 141

3. Materialize only some of the views: an appropriate subset of views to materialize is chosen to facilitate
the execution of all queries.

Example 7.1
Let us see by an example why a full materialization of views is generally not convenient. Let us
consider the lattice in the following figure, where the root is the fact table and the other nodes
possible candidate views to materialize. Each node is labeled with the view grouping attributes.
The numbers associated with the nodes represent the view size, measured in terms of the number of
tuples in the view. These numbers are normally derived from a view size estimation algorithm. A
given view can be calculated from any materialized ancestor view.

v3(P, D) 500

v1(P, S, D) 1000

v7(D) 150

v4(S, D) 700

v5(P) 200

v2(P, S) 1000

v8() 1

v6(S) 100

A full materialization of views will have a cost of 3 651. The only view that must necessarily be
materialized is the fact table v1. Suppose that a query q groups data by P, S. If the view v2 has been
materialized, the q execution requires a view scanning with a cost of 1 000. But v2 has a cost equal
to that of v1, so therefore the query can be executed at the same cost using v1 without materializing
v2.

The approach of partial materialization of views, which will be considered in the following, raises three
interesting issues: (a) which views materialize, (b) which of them to use to execute a query and (c) how
to update a view when the fact table is updated. For simplicity in the following the focus will be on the
first two problems, because we assume that the fact table is static.

The problem will be studied following the approach presented in [Harinarayan et al., 1996] with the
following assumptions:

– The views are defined in SQL with a GROUP BY, without restrictions and using only the aggregation
function SUM on the measure m: XγSUM(m), with X a set of dimensions.

For simplicity, a view v is represented as Xγ, without the aggregation function, and g(v) is the set of
grouping attributes X . The order of attributes in X is irrelevant.

– The queries in the workload are equiprobable and are defined in SQL with a GROUP BY, a possible re-
striction on the dimensions (logical product of predicates Attr = constant), and the aggregation function
SUM(m).

SELECT <Grouping attributes>, SUM(m) AS m
FROM <Fact Table>
WHERE <Condition on some attributes>
GROUP BY <Grouping attributes>;

For brevity, a query q is represented as Xγ σY , with X and Y disjoint set of attributes, and let A(q)
be the set of attributes X ∪ Y .

7.3. View Sizes Estimation 142

Each query q is associated with the minimum view of the lattice from which it can be computed. More
precisely, between the queries and views is defined a relationship computability as follows:

� Definition 7.1 Relationship Computability
Let q be a query and v a view; we say q � v if q can be answered using the result of v. If
A(q) = X ∪ Y and g(v) = Z, q � v if and only if X ∪ Y ⊆ Z.

Given two views v1 and v2, and a query q, if v1 � v2 and q � v1, then q � v2. Given a query q and a
view v, if q � v, then v is called a candidate view to materialize.

7.3 View Sizes Estimation

The algorithms for the selection of the views to materialize assume that the size of the views in the lattice
is known. Let us see some of the methods proposed in the literature to solve the problem [Shukla et al.,
1996]:

1. Analytic Approach. Let us assume that the attributes values are uniformly distributed in the fact table
F , and statistically independent, the view size |v| of the view v defined as a grouping on attributes X
of F , is estimated with Cardenas’ formula:

|v| = n− n(1− 1/n)|F |

where n is the number of possible values of X and |F | is the fact table size.
For example, let R(A,B,C), Nrec(R) its size and Nkey(A), Nkey(B) the number of the attributes
A and B distinct values. To estimate the view size of v on R, which groups on (A,B), we assume
|F | = Nrec(R) and n = Nkey(A)×Nkey(B).

2. A Sampling Approach. The idea is to take a sample S of the fact table F , to estimate the view size
vs, and to estimate the size of the view v as:

|v| = |vs| × |F |/|S|

This method is less accurate than the previous and tends to overestimate the size of a view as the
number of duplicates in the data increases.

3. Pareto Model Approach. A recent proposal, more accurate than the previous approaches [Nadeau
and Teorey, 2001].

7.4 A Greedy Algorithm for the Selection of Materialized Views

Following the approach presented in the interesting article [Harinarayan et al., 1996], we study the prob-
lem under the following assumptions (Figure 7.2):

7.4. A Greedy Algorithm for the Selection of Materialized Views 143

Query
Workload

Candidate
Views

Selection
Algorithm

Materialized
Views

Constraints
and Goals

Cost Model

Figure 7.2: The Selection Process of the Views to Materialize

1. The set of candidate views to materialize are the lattice nodes, and the space cost C(vi) of each view
(the number of rows in the view) vi is known.

2. There are only k candidate views to materialize, different from the top view (the fact table) always
materialized.

3. The workload is the set of queries that define the lattice views.
4. The dimensions are without attributes.

Let C(qi,M) be the cost of executing the query qi using the set of materialized views M . The goal is
to select the set of views which minimizes the overall execution cost of the queries Q, that is to say the
quantity:

τ(V,M) =

|Q|∑
i=1

C(qi,M)

respecting the constraint that only k candidate views V can be materialized, along with the root of the
lattice.

The optimization problem has been proved to be NP-complete. Therefore an approximate greedy so-
lution to avoid an exhaustive search in the space of all possible solutions has been proposed that in each
iteration calculates the benefit of the remaining nodes and selects for materialization the one with the
maximum benefit.

The algorithm is iterative and terminates after k iterations. In each iteration, one more node is added to
M , building the final result in steps. The choice of a node v in the i-th iteration depends on the quantity
B(v,M), which is called the benefit of v relative to M and is calculated as follows:

1. For each view w � v (i.e. w is v or one of its descendants), let vm be the view of least cost in M such
that w � vm. Note that since the top view is in M , there must be at least one such view in M . Then
define Bw as Bw = max{C(vm)− C(v), 0}.

2. B(v,M) is defined as B(v,M) =
∑

w�v Bw

In other words, the benefit of a view v is evaluated by considering how it can improve the cost of com-
puting itself and all of its descendants w � v.

For each descendant w of v, the cost of computing w using v is compared with the cheapest cost of
computing w using some node vm that already belongs to M . If v helps, which means that C(v) <
C(vm), then the difference C(vm) − C(v) contributes to the total benefit, which is the sum of all such
differences.

7.4. A Greedy Algorithm for the Selection of Materialized Views 144

The greedy algorithm in Figure 7.3 is a solution of the problem (we refer to the algorithm described by
Harinarayan, Rajaraman, and Ullman henceforth as HRU).

Algorithm HRU(k)

% Let v1 be the lattice root
M = {v1};
N = V −M ;
for i = 1 to k
{ v = the view in N , such that B(v,M) the maximum;
M =M ∪ {v};
N = N − {v} };

return M ;

Figure 7.3: The greedy algorithm HRU to select k views to materialize

Example 7.2
Let us consider the lattice

v3(P, D) 500

v1(P, S, D) 1000

v7(D) 150

v4(S, D) 700

v5(P) 200

v2(P, S) 1000

v8() 1

v6(S) 100

The initial state for HRU has only the fact table v1 materialized, with cost 1 000. HRU calculates
the benefits of each possible view during each iteration, and selects the most beneficial view for
materialization. Processing continues until k materialized views have been chosen.

First Choice Second Choice Third Choice

v2(P, S) 0 0 0
v3(P,D) 500× 4 = 2000
v4(S,D) 300× 4 = 1 200 300× 2 = 600 300× 1 = 300
v5(P) 800× 2 = 1 600 300× 2 = 600 300× 1 = 300
v6(S) 900× 2 = 1 800 900+ 400 = 1300
v7(D) 850× 2 = 1 700 350× 2 = 700 350× 1 = 350
v8() 999× 1 = 999 499× 1 = 499 99× 1 = 99

When considering the view of v2, since its cost is equal to that of v1, there will be no benefit to using
it. Considering instead v3, if materialized, it reduces the associated query cost of (1 000− 500) and
also the three descendants benefit, which will be calculated by v3 and not by v1. Therefore, its
benefit with respect to M is 500 × 4. When several views have the same benefit, the one that
occupies less space is chosen. At the end of the first choice v3 is also the most useful view to
materialize.

In the second iteration, the calculation of the benefit of a view must consider whether its descen-
dants can be calculated from v1 or from v3 already materialized. For example,

7.5. Other Algorithms for the Choice of the Views to Materialize 145

– In the calculation of the benefit of v4, the descendant v6 only is considered because v7 and v8
are computed from v3, being C(v4) > C(v3).

– In the calculation of the benefit of v6, the descendant v8 can be computed using v3, but since
C(v6) < C(v3), the materialization of v6 allows us to compute v8 with the benefit Bv8 =
500− 100, and so Bv6 = 900 + 400.

The algorithm ends with the solution M = {v1, v3, v6, v7}.

In general, the algorithm does not find the optimal solution, but the authors have shown that it provides
good results and the following interesting properties hold [Harinarayan et al., 1996]:

� Theorem 7.1
For each lattice, let Bgreedy be the benefit of k views selected by the algorithm greedy and Bopt
be the benefit of the optimum choice of k views, then Bgreedy can never be less than 0, 63×Bopt.

7.5 Other Algorithms for the Choice of the Views to Materialize

By modifying the assumptions of the algorithm HRU other algorithms have been proposed for the selec-
tion of views to materialize [Morfonios et al., 2007]. Let us see some of them.

7.5.1 Algorithm PGA

The algorithm HRU has a time complexity O(k × n2), with k the number of views to be selected and
n the number of nodes of the lattice. Since the number of nodes depends exponentially on the number
of dimensions d, the complexity of the algorithm is O(k × 22d). An algorithm with polynomial time
complexity on the number of dimensions is described in [Nadeau and Teorey, 2002] (Polynomial Greedy
Algorithm, PGA).

The exponential complexity of HRU depends on two choices made for the calculation of a view benefit:

1. It considers all remaining views on the entire lattice that have not yet materialized, which are in the
order of 2d.

2. It considers for each view v all its descendants that benefit from the v materialization, which are again
in the order of 2d.

The basic idea of the algorithm PGA is to reduce the number of views to be considered in both cases
proceeding during each iteration in two phases, called nomination and selection. In the first phase PGA
nominates promising views into a candidate set, initially empty. The nomination phase begins at the root
of the lattice and nominates the smallest view v from the children; then nominates the smallest child
of v, and so on until the the bottom of the lattice is reached. Once a path of promising views has been
nominated, the candidate set is considered for materialization in the second phase.

In the selection phase PGA estimates the benefits of materializing each candidate view, and selects the
most beneficial one for materialization.

To compute the benefit of a candidate view v, the algorithm proceeds as follows:

– It is considered the smallest ancestor am of v in M .
– It considers whether there is a materialized view vm in M such that vm is smaller than v, vm is not

an ancestor of v and with the maximum number of descendants d(vm) in common in the lattice. Let
d = d(v) + 1 − d(vm), where d(v) is the number of descendants of v in the lattice. The values of
d(v) and d(vm) are computed in each nomination phase.

– The benefit of v is (C(am)− C(v))× d.

7.5. Other Algorithms for the Choice of the Views to Materialize 146

Example 7.3
Let us consider again the lattice

v3(P, D) 500

v1(P, S, D) 1000

v7(D) 150

v4(S, D) 700

v5(P) 200

v2(P, S) 1000

v8() 1

v6(S) 100

and let k = 3. The following table, for each iteration, shows the two algorithm’s phases and the
candidates’ views. The nominated views at each iteration are marked with a

√
.

Views Iteration 1 Iteration 2 Iteration 3
Selection Selection Selection

v2(P, S)
√

0
v3(P,D)

√
500× 4 = 2000

v4(S,D)
√

300× 2 = 600
√

300× 2 = 600
v5(P)

√
300× 1 = 300

v6(S)
√

900× 2 = 1800
v7(D)

√
850× 2 = 1 700

√
350× 2 = 700

√
350× 1 = 350

v8()
√

999× 1 = 999
√

499× 1 = 499
√

99× 1 = 99

At the first iteration PGA nominates the smallest node v3 from amongst the children of the root
of the lattice v1. PGA then examines the children of v3 and nominates the smallest child v7. The
process continues until the bottom of the lattice is reached. The candidate set is then {v3, v7, v8}.

The selection phase evaluates each view v in the candidate set, and selects the one with the highest
benefit if materialized. Since the smallest ancestor am of v in M is v1, and there is no materialized
view vm in M smaller than v and with the maximum number of descendants d(vm) in common in
the lattice, v3 is selected with the highest benefit (C(v1)−C(v3))× (d(v3) + 1) = 500× 4, and it
is eliminated from the candidate set.

At the second iteration PGA nominates v4 and v6, and the candidate set becomes {v4, v6, v7, v8}.
In the selection phase for v7 and v8 the view am is v3, materialized in the previous step, while for

v4 and v6 the view am is v1. In calculating the benefit of v4, the smallest ancestor inM is v1 and the
view vm is v3 with two descendants in common, therefore (C(v1)−C(v4))×(d(v4)+1−d(vm)) =
300× 2. In calculating the benefit of v6, v7 and v8, since there is no smallest view am to consider,
v6 is selected with the highest benefit, and it is eliminated from the candidate set.

At the third iteration the candidate views are {v2, v4, v5, v7, v8}. v4 is selected and the result is
M = {v1, v3, v6, v4}, different from that found previously with the algorithm HRU.

In general, the algorithms HRU and PGA do not find the same setM , because they use different heuristics.
In addition, for the algorithm PGA the existence of a lower limit on the quality of the solution has not
been proved, as for the HRU, but it has been shown experimentally that, as the number of dimensions
increases, the algorithm finds solutions with a total benefit not much lower than that found by HRU, but
in less time.

7.5. Other Algorithms for the Choice of the Views to Materialize 147

7.5.2 Algorithm with an Upper Bound on the Memory Available

Let us assume that instead of having a limit on the number of views k that can be materialized, there is an
upper bound on the total storage space S that the set of materialized views M can occupy [Harinarayan
et al., 1996].

Let S(v) = |v| be the space occupied by the view v. The algorithm in Figure 7.4 (Benefit for Unit of
Space), in the i-th iteration chooses a view not based on the absolute benefit B(v,M), but on the benefit
per space-unit that v occupies B(v,M)/|v|.

Algorithm BPUS(S)

% Let v1 the lattice root, which is always stored
M = {v1};
N = V −M ;
while S > 0
{ v = the view in N with the maximum benefit Bs;

if (S − S(v) > 0) then
{S = S − S(v);
M =M ∪ {v};
N = N − {v}};

else S = 0;
}return M ;

Figure 7.4: A greedy algorithm with an upper bound on the total storage space occupied by the
materialized views

In [Shukla et al., 1998] a variation of BPUS to reduce its complexity has been proposed, shown in Fig-
ure 7.5 (Pick By Size), with complexity O(n log n).

It has been proved that for lattices called Size Restricted BPS and BPUS produce the same result.
A lattice is Size Restricted when for each view v with k children, for each ancestor z the following
relation holds

|z| ≥ (1 + k)× |v|

when |z| 6= |v1|. For example, the algorithm applied to the previous example, with S = 700, finds the
solution M = {v1, v8, v6, v7, v5}.

Algorithm PBS(S)

% Let v1 the lattice root, which is always stored
M = {v1};
N = V −M ;
while S > 0
{ v = the smallest view in N ;

if (S − S(v) > 0) then
{S = S − S(v);
M =M ∪ {v};
N = N − {v} };

else S = 0;
}return M ;

Figure 7.5: Another greedy algorithm with an upper bound on the total storage space occupied
by the materialized views

7.5. Other Algorithms for the Choice of the Views to Materialize 148

7.5.3 Algorithm for a Particular Workload

If the queries of the workload are not equally likely, and then some views are more used than others, the
algorithm HRU can be easily modified in the step of calculating the benefit, weighting each view with its
likelihood of being used.

If the workload Q is not the set of queries defining the views of the lattice, each query has a natural
view from which it is most easily answered. In [Baralis et al., 1997] it has been shown that it is not
necessary to apply the selection algorithm to the set of lattice nodes, but it is enough to consider only the
so-called candidate views set, defined as follows.

� Definition 7.2
Given a workload Q, a lattice node v belongs to the candidate-view set, if it satisfies one of the
following two conditions:

1. There is a query q ∈ Q such that A(q) = g(v).
2. There are two candidate views vi and vj such that g(v) = g(vi) ∪ g(vj), with g(vi) ∪ g(vj)

the attributes of the most specialized common ancestor vi and vj .

An algorithm to compute the set C of candidate views is shown in Figure 7.6.

Algorithm C(Q)

% Top is the set of attributes of the lattice root
C = the set of g(v) such that g(v) = A(q) for each q ∈ Q;
while (changes to C)
{ for g(vi) ∈ C with g(vi) 6= Top
{for g(vj) ∈ C with g(vj) 6= Top

and g(vj) 6= g(vi) and g(vi) ∪ g(vj) 6∈ C
{ C = C ∪ g(vi) ∪ g(vj)}};

}return C;

Figure 7.6: An algorithm to compute the set of candidate views

Example 7.4
Let us consider the lattice in Figure 7.7a. Let the workload Q be the following queries on the fact
table v1:

– q1 : Pγ

– q2 : Dγ

– q3 : Dγ σS

C is initialized to the set of nodes associated with the queries in Q:

– g(v5) = A(q1) = {P}
– g(v7) = A(q2) = {D}
– g(v4) = A(q3) = {S,D}

C is extended with the nodes that are the most specialized common ancestors of node pairs that
already belong to C.

{P} ∪ {D} = {P,D}

7.5. Other Algorithms for the Choice of the Views to Materialize 149

The algorithm terminates whenC has not changed in the last iteration, with the result of Figure 7.7b.

v3(P, D) 500

v1(P, S, D) 1000

v7(D) 150

v4(S, D) 700

v5(P) 200

v2(P, S) 1000

v8() 1

v6(S) 100

q3

q2q1

(a)

v3(P, D) 500

v1(P, S, D) 1000

v7(D) 150

v4(S, D) 700

v5(P) 200

q3

q2
q1

(b)

Figure 7.7: Candidate views for the workload Q New

Once the set of candidates views has been defined, we then proceed with one of the algorithms previously
seen for the choice of the candidate views to materialize.

7.5.4 Algorithm for Dimensional Attributes

The presence of dimensional attributes increases the number of potential grouping attributes, and there-
fore an exponential increase in the number of nodes in the lattice. However, since the dimensional at-
tributes are functionally dependent on the key of the corresponding table, some of the nodes of the lattice
are redundant. For example, if a dimensional table has the key K and the attribute A, the grouping on
(K) produces the same groups as a grouping on (K,A).

Example 7.5
Let us consider the fact table F with the foreign key A for the dimensional table T:

F(D, A)
T(A, B, C)

Figure 7.8a shows the views lattice with the natural join F ./ T as root, and Figure 7.8b shows how
the lattice is simplified because of the functional dependency A→ BC.

()

(a)

(D) (A) (B) (C)

(D, A) (D, B) (A, B) (D, C) (A, C) (B, C)

(D, A, B) (D, A, C) (D, B, C) (A, B, C)

(D, A, B, C)

()

(b)

(D) (B)(C)

(D, B)(D, C) (B, C)

(D, B, C) (A)

(D, A)

Figure 7.8: Lattice with dimensional attributes

7.6. The Selection of Indexes on Materialized Views 150

7.5.5 Algorithm for Dimensional Attributes and Hierarchies

For simplicity, let us assume that total ordering only exists over the dimension hierarchies, that is, each
attribute has at most one child. A hierarchy among a more specific attribute s and another more general
g of a table is equivalent to a functional dependence s→ g.

The presence of hierarchies between dimensional attributes can remove some elements from the lattice.
For instance, if there is the hierarchy s→ g, a view defined with grouping attributes (s, g) is redundant,
because a grouping on (s, g) produces the same groups as a grouping on (s).

Example 7.6
Let us consider the fact table F with attribute A the external key for the dimensional table T, which
is defined with the hierarchy B → C:

F(D, A)
T(A, B, C)

Figure 7.9a shows the lattice of views without considering the hierarchy ofB → C, and Figure 7.9b
shows how the lattices change by considering the dimensional hierarchy.

()

(D) (B)(C)

(D, B)(D, C) (B, C)

(D, B, C) (A)

(D, A)

(a)

()

(D) (C)

(D, C) (B)

(D, B) (A)

(D, A)

(b)

Figure 7.9: Lattice in the presence of hierarchies with total ordering

7.6 The Selection of Indexes on Materialized Views

In general to reduce the execution time of the queries that use materialized views it is useful to put one
or more indexes on a view.

For example, let us consider the execution of the query q = σB using a view v with attributes (A,B).
Without indexes, let us assume that the execution cost estimate is the number of records |v(A,B)|. If
there is the index IB on v, the execution cost estimate, without considering the number of index nodes
processed, becomes |v(A,B)|/Nkey(IB) = |v(A,B)|/|πB(v)|.

Two approaches can be adopted for the selection of both the materialized views and the indexes on
them:

1. Two steps approach: The selection of materialized views is made first, and then the selection of
indexes is made using the techniques adopted for selecting indexes on a relational database (Fig-
ure 7.10a).

7.7. Summary 151

2. One step approach: Indexes and materialized views selection is made together because the two prob-
lems can interact with one another, i.e., the presence of an index can make a materialized view more
convenient and vice versa (Figure 7.10b).

Materialized
Views

Candidate
Indexes

Selection
Algorithm

Indexes

Constraints
and Goals

Cost Model

(a) Two phases approach

Query Workload

Candidate
Indexes

Candidate
Views

Selection
Algorithm

Materialized Views
and Indexes

Constraints
and Goals

Cost Model

(b) One phase approach

Figure 7.10: Approaches for indexes and materialized views selection

In [Gupta et al., 1997] an example is shown of the poor performance of the two-step approach, and a
family of one-step greedy algorithms, given space constraints, that produce better solutions. A similar
proposal for the system Microsoft SQL Server 2000 is presented in [Agrawal et al., 2000].

7.7 Summary

– Instead of treating a view as a query on the database, the technique of materialized views plans to store
the result of the query that defines it. Then to execute a complex query it is possible that a materialized
view exists such that some or all of the more complex operations have already been performed.
Therefore, using the previously stored data, the query can be appropriately rewritten automatically
to use the view, without the user knowing of the existence of materialized views, with significant
improvements in response times.

– The choice of the views to materialize, and the indexes on them, by the data base administrator, or
automatically by the system according to the type of use that is made of data, requires the use of
appropriate algorithms.

– The basic algorithm HRU has been presented, and some of its interesting extensions for the selection
of views to materialize.

7.7. Summary 152

Chapter 8

OPTIMIZATION OF STAR QUERIES
WITH GROUPING

The data warehouse systems, because of the quantities of data managed and the different sizes of fact and
and dimensional tables, require new techniques for star query optimization. In particular, new specific
solutions have been studied for the following problems: (a) how to optimize the execution of the GROUP
BY and (b) how to rewrite queries to generate query plans using materialized views. In the following we
consider the first problem and the second one is considered in the next chapter.

8.1 Introduction

The standard way to evaluate queries with group-by is to perform the joins first and then the group-
by. However, several authors have shown that the optimizer should also consider doing the group-by
before the join to produce cheaper access plans [Chaudhuri and Shim, 1994], [Yan and Larson, 1995],
[Galindo-Legaria and Joshi, 2001], [Tsois and Sellis, 2003]. We will considered the three cases studied
in [Chaudhuri and Shim, 1994], [Galindo-Legaria and Joshi, 2001], for which the authors have given
sufficient conditions for doing the group-by first on the basis of the query structure. In what follows, we
will first reformulate and revise the conditions, and then we will show how they can be used to optimize
star queries that exploits the benefits of bringing forward the group-by on the fact table.

The examples will be given using the following simple star schema, where the keys are underlined
(different keys of the same table are underlined differently):

Orders

OrderNo
ProductFK
DealerFK
Price
Qty

Product
ProductPK
PName
Cost
Category

Dealers
DealerPK
DName
City
State

The sufficient conditions to bring forward the group-by are given in the form of equivalence rules of
relational algebra. The optimizer considers two ways to evaluate the group-by from the global rowset:
the first one evaluates the group-by using the result of the join operator, the second evaluates the group-
by before the join operator. Based on the cost estimates of the two alternative query plans, the optimizer
will then decide which one to use to evaluate the query.

Before presenting the equivalence rules that are useful for bringing forward the group-by, let us give
the reader a brief review of some basic properties both of functional dependencies and of the group-by
operator that will be also used in the next chapter.

8.2 Properties of Functional Dependencies and of the Group-by
Operator

For simplicity, we assume that

8.2. Properties of Functional Dependencies and of the Group-by Operator 154

1. The database tables are without null values and are sets because have been defined with keys.
2. The FROM clause uses a set of tablesR, where no attribute appears in two different tables.
3. The condition C in the WHERE clause is a conjunctive normal form (CNF) of predicates involving

attributes of the tables inR.
4. All the grouping attributes are present in the SELECT clause.

We will use a basic algorithm of functional-dependency theory for determining if an interesting func-
tional dependency can be inferred from the set F of functional dependencies which hold in the result of
a query.

Let us briefly recall some basic properties of functional dependencies.

� Definition 8.1 Functional Dependency
Given a relation schema R and X , Y subsets of attributes of R, a functional dependency X → Y
(X determines Y) is a constraint that specifies that for every possible instance r of R and for any
two tuples t1, t2 ∈ r, t1[X] = t2[X] implies t1[Y] = t2[Y].

A peculiar example of functional dependency, that will be used in the following, is ∅ → Y :
it specifies that the value of Y is the same for every tuple of an instance r of R.

Example 8.1
Let us consider the following relation containing information about students and exams at the Uni-
versity of Pisa.

StudentsExams
StudCode Name City Region BirthYear Subject Grade University

1234567 N1 C1 R1 1995 DB 30 Pisa
1234567 N1 C1 R1 1995 SE 28 Pisa
1234568 N2 C2 R2 1994 DB 30 Pisa
1234568 N2 C2 R2 1994 SE 28 Pisa

Let us see if the following functional dependencies are properties of the meaning of the attributes
in the relation:

– StudCode → Name, City, Region, BirthYear holds because each student code has the same name,
city, region and birth year.

– City→ Region holds because each city is in a region.
– StudCode, Subject→ Grade holds because each students receive one grade in each subject.
– ∅ → University holds because the data are only about students and exams at the University of Pisa.
– Subject→ Grade does not hold because a subject may have different grades.
– Subject→ Subject is not useful because always holds, and it is called “trivial”.

Given a set F of functional dependencies, we can prove that certain other ones also hold. We say these
ones are logically implied by F .

� Definition 8.2 Logical Implication
Given a set F of functional dependencies on a relation schema R, another functional dependency
X → Y is logically implied by F if every instance of R that satisfies F also satisfies X → Y :

F ` X → Y

8.2. Properties of Functional Dependencies and of the Group-by Operator 155

This property holds if X → Y can be derived by F using the following set of inference rule,
known as the Armstrong’s axioms:

(Reflexivity) If Y ⊆ X, then X → Y

(Augmentation) If X → Y, Z ⊆ T, then XZ → Y Z

(Transitivity) If X → Y, Y → Z, then X → Z

A simpler way of solving the implication problem follows from the following notion of closure of an
attribute set.

� Definition 8.3 Closure of an Attribute Set
Given a schema R < T,F >, and X ⊆ T , the closure of X , denoted by X+, is

X+ = {Ai ∈ T |F ` X → Ai}

The closure of attributes is used in the following result.

� Theorem 8.1
F ` X → Y iff Y ⊆ X+

Thus testing whether a functional dependency X → Y is implied by F can be accomplished by comput-
ing the closure X+. The following simple algorithm can be used to compute this set, although a more
efficient and complex one exists.1

� Algorithm 8.1 Computing the Closure of an Attribute Set X

X+ = X;
while (changes to X+) do

for each W → V in F with W ⊆ X+ and V 6⊆ X+

do X+ = X+ ∪ V ;

Functional dependencies are commonly used to normalize a database schema, but in the following we
will show that they are also useful to reason about the properties of a query result.

A set of functional dependencies F which hold in the result of a query with joins and selections is
found as follows:

1. Let F be the initial set of functional dependencies where their determinants are the keys of every
table used in the query.

2. Let C the condition of the σ operator. If a conjunct of C is a predicate Ai = c, where c is a constant,
F is extended with the functional dependency ∅ → Ai.

3. If a conjunct of C is a predicate Aj = Ak, e.g., a join condition, F is extended with the functional
dependencies Aj → Ak and Ak → Aj .

Note that the following properties hold.

– If X → Y in R or in S, then this is still the case in R× S.
– If X is a key for R and Y is a key for S then X ∪ Y is a key for R× S.

1. For an example see the application implemented by R. Orsini available at this URL: http://dblab.dsi.unive.it:8080

8.2. Properties of Functional Dependencies and of the Group-by Operator 156

A way for determining if an interesting functional dependency X → Y may be inferred from the set
F is to use the previous algorithm to compute X+. Instead, in the following examples we will use
the following version of the algorithm to compute X+, which does not use explicitly the functional
dependencies.

� Algorithm 8.2 Computing the Closure of an Attribute Set X

1. Let X+ = X .
2. Add to X+ all attributes Ai such that the predicate Ai = c is a conjunct of σ, where c is a

constant.
3. Repeat until X+ is changed:

(a) Add to X+ all attributes Aj such that the predicate Aj = Ak is a conjunct of σ and
Ak ∈ X+.

(b) Add to X+ all attributes of a table if X+ contains a key for that table.

8.2.1 Properties of the Group-by Operator

We consider only some basic equivalence rules on relational algebra expressions involving the group-by
operator which will also be useful for proving more complex ones later on. For the sake of brevity, we
only give an informal justification of these equivalence rules.

1. If Y contains the grouping attributes X and the aggregation attributes in F , then

XγF (π
b
Y (E)) ≡ XγF (E) (8.1)

The equivalence follows from the hypothesis.
2. A restriction can be moved before the grouping operator in the following cases.

(a) If θ uses only attributes from X and F is a set of aggregate functions that use only attributes from
E, then

σθ(Xγ F (E)) ≡ Xγ F (σθ(E)) (8.2)

The restriction of the left hand side eliminates a record r from the γ result if and only if it elimi-
nates all the records from the group that has generated r.

(b) If X and B are attributes from E, with B 6∈ X , v is a B value and MIN is the only aggregate
function, then

σmB<v(Xγ MIN(B)AS mB(E)) ≡ Xγ MIN(B)AS mB(σB<v(E)) (8.3)

If the restriction of the left hand side eliminates a record r such that the attribute value r.mB is the
minimum among those of its group, then each record ri of the group has ri.B ≥ r.mB ≥ v, and
therefore all of them will be eliminated by the restriction of the right hand side. The equivalence
also holds if < is ≤.

(c) If X and B are attributes from E, with B 6∈ X , v is a B value and MAX is the only aggregate
function, then

σMB>v(Xγ MAX(B)AS MB(E)) ≡ Xγ MAX(B)AS MB(σB>v(E)) (8.4)

If the restriction of the left hand side eliminates a record r such that the attribute value r.MB is
the maximum of those of its group, then each record ri of the group has ri.B ≤ r.MB ≤ v, and
therefore all of them will be eliminated by the restriction of the right hand side. The equivalence
also holds if > is ≥.

8.2. Properties of Functional Dependencies and of the Group-by Operator 157

3. If X and Y are attributes from E, Y 6⊆ X , X → Y and F is a set of aggregate functions that use
only attributes from E, then

Xγ F (E) ≡ πbX∪F (X∪Y γ F (E)) (8.5)

Each record of a group that has generated a record r of the γ in the left hand side belongs to the same
group that has generated a record r of the γ in the right hand side.

4. An aggregate function f is called decomposable if there is a local aggregate function fl and a global
aggregate function fg, such that for each multiset V and for any partition of it {V1, V2} we have

f(V1 ∪all V2) = fg({fl(V1), fl(V2)})

where ∪all is the SQL’s union-all operator without duplicate elimination.
For example, SUM, MIN, MAX and COUNT are decomposable:

– SUM(V1 ∪all V2) = SUM({SUM(V1), SUM(V2)})
– MIN(V1 ∪all V2) = MIN({MIN(V1), MIN(V2)})
– MAX(V1 ∪all V2) = MAX({MAX(V1), MAX(V2)})
– COUNT(V1 ∪all V2) = SUM({COUNT(V1), COUNT(V2)})2

If the aggregate functions in F are decomposable, X and Y are attributes from E, Y 6⊆ X , X 6→ Y ,
then

Xγ F (E) ≡ Xγ Fg
(X∪Y γ Fl

(E)) (8.6)

Adding new grouping attributes to the internal γ of the right hand side produces smaller groups on
which the local aggregate functions are computed, but then external γ combines these partial results
to compute the global aggregate functions, and the result is the same as the γ of the left hand side.

5. Let A 6∈ X be an attribute from E such that X → A and F is a set of aggregate functions that use A,
renamed with AS Ide, then

Xγ F (E) ≡ πbX∪Z(X∪{A}γ COUNT(∗) AS GBCount (E)) (8.7)

where Z is a set of expressions such that

– A× GBCount AS Ide ∈ Z, if f(A) ∈ F is SUM(A) AS Ide,
– A AS Ide ∈ Z, if f(A) ∈ F is MIN(A) AS Ide, MAX(A) AS Ide, AVG(A) AS Ide,
– GBCount AS Ide ∈ Z, if f(A) ∈ F is COUNT(A) AS Ide.

The groups generated from the γ in the right hand side are exactly the same as those generated by the
γ in the left hand size, and they have equal A values. Consequently the aggregate functions f ∈ F
can be removed from the γ in the right hand side and their values can be computed with the π using
the given rules since the a value is the same in each group.

As a special case, the equivalence rule also applies when A ∈ X .
6. IfX = XE1 ∪ XE2 , withXE1 andXE2 not empty sets of attributes fromE1 andE2,XE2 a superkey

of E2 and F is a set of aggregate functions that use only attributes from E1, then

Xγ F (E1 × E2) ≡ πbX∪F ((XE1
γ F (E1))× E2) (8.8)

2. AVG is not decomposable according the given definition, but it can be computed with a different rule from two local functions
SUM and COUNT:

AVG(V1 ∪all V2) = SUM({SUM(V1), SUM(V2)}) / SUM({COUNT(V1), COUNT(V2)})

8.3. First Case: Invariant Grouping 158

Let n1 and n2 be the number of different values of the grouping attributes in E1 and E2, with n2 =
|E2|. For each value Xi

E1
of XE1 , if ki records have the same values of Xi

E1
, in E1 × E2 there are

ki × n2 records, and ki of them belong to the same group because they have the same values of X .
The result has n1 × n2 records.
The same records are generated by the right hand side expression where first the relation W is com-
puted with n1 different records by grouping E1 on XE1 and then W ×E2 is computed to get n1×n2
records.

8.3 First Case: Invariant Grouping

This first case for doing the group-by before a join is called invariant grouping since the operator can be
brought forward without modifications, but the transformation may require an additional projection to
produce the final result.

Let A(α) be the set of attributes in α and R ./
Cj
S an equi-join using the primary key pk of S and the

foreign key fk of R.

� Theorem 8.2 Invariant Grouping
R has the invariant grouping property

Xγ F (R
./
Cj
S) ≡ πbX∪F ((X∪A(Cj)−A(S)γ F (R))

./
Cj
S) (8.9)

if the following conditions are true:

1. X → fk, i.e. the foreign key of R is functionally determined by the grouping attributes X in
R ./

Cj
S.

2. Each aggregate function in F uses only attributes from R.

Proof

Xγ F (R
./

fk=pk
S) ≡ Xγ F (σfk=pk(R× S))

if inR ./
fk=pk

S,X → fk holds (condition 1), thenX → pk because fk = pk and so using rule 8.5:

Xγ F (R
./

fk=pk
S) ≡ πbX∪F (X∪{fk,pk}γ F (σfk=pk(R× S)))

then using rule 8.2:

Xγ F (R
./

fk=pk
S) ≡ πbX∪F (σfk=pk(X∪{fk,pk}γ F (R× S)))

since each attribute in F is from R (condition 2), then using rule 8.8:

Xγ F (R
./

fk=pk
S) ≡ πbX∪F (σfk=pk(π

b
X∪{fk,pk}∪F ((X∪{fk}−A(S)γ F (R))× S)))

Xγ F (R
./

fk=pk
S) ≡ πbX∪F (πbX∪{fk,pk}∪F (σfk=pk((X∪{fk}−A(S)γ F (R))× S)))

Finally, since the internal π is superfluous, we end up with:

Xγ F (R
./

fk=pk
S) ≡ πbX∪F ((X∪{fk}−A(S)γ F (R))

./
fk=pk

S) �

8.3. First Case: Invariant Grouping 159

Example 8.2
Consider the query

SELECT PName, SUM(Qty) AS Amt
FROM Orders, Products
WHERE ProductFK = ProductPK
GROUP BY PName;

represented with the logical tree

PNameγ SUM(Qty) AS Amt

./
ProductFK = ProductPK

Orders Products

To decide whether Orders has the invariant grouping property, since the Condition 2 holds, let us
check whether PName→ ProductFK, with PName a key in Products:

PName+ = {PName,ProductPK, Cost, Category}
= {PName,ProductPK, Cost, Category, ProductFK}

Since PName+ contains ProductFK, PName → ProductFK holds and the logical query tree can be
transformed as follows:

πbPName, Amt

./
ProductFK = ProductPK

ProductFKγ SUM(Qty) AS Amt

Orders

Products

Observation
The invariant grouping property can also be exploited in the following cases to do a group-by before the
join:

– Having. An SQL query with a HAVING clause, is represented with the following algebraic expression:

σθ(Xγ F (R
./
Cj
S))

We assume that (a) the restriction cannot be moved before the grouping operator using the equiva-
lence rules 8.2, 8.3 or 8.4, and (b) the conjunctive terms in θ that do not contain aggregate functions
have been moved in a restriction before the grouping operator using the equivalence rules 8.2. If

8.4. Second Case: Double Grouping 160

the invariant grouping property holds, then the restriction due to the HAVING clause can be brought
forward together with the γ operator.

– Star query. Let R be the fact table and Si a set of n dimensional tables joined with R:

R ./
Cj1

S1
./
Cj2

S2 . . .
./
Cjn

Sn

We represent the star query in the form

R ./
Cj
{S1, . . . , Sn}

with Cj = Cj1 ∧ Cj2 · · · ∧ Cjn .

R has the invariant grouping property

Xγ F (R
./
Cj
{S1, . . . , Sn}) ≡ πbX∪F ((X∪A(Cj)−A({S1,...,Sn})γ F (R))

./
Cj
{S1, . . . , Sn})

if the following conditions are true:

1. X → fk1fk2 . . . fkn , with fk1fk2 . . . fkn the foreign keys of R for the dimensional tables used in
the joins.

2. Each aggregate function in F uses only attributes from R.

8.4 Second Case: Double Grouping

The invariant grouping property is interesting in terms of its simplicity, but its applicability restrictions
limit its use. For example, in the following query it is not possible to move the group-by because the
condition 1 of Proposition 8.2 does not hold:

SELECT Category, SUM(Qty) AS Amt
FROM Orders, Products
WHERE ProductFK = ProductPK
GROUP BY Category;

The following theorem gives a sufficient condition to move the group-by on the fact table in this kind
of queries as well, but then another group-by is required to compute the final aggregations [Chaudhuri
and Shim, 1994], [Galindo-Legaria and Joshi, 2001], [Yan and Larson, 1995]. The group-by operation
is therefore done in two stages: the first one creates smaller groups and does part of the aggregations,
then the second stage combines multiple groups into a single one to get the final result. Such a staged
aggregation requires that the aggregate functions satisfy the following property.

� Definition 8.4 Early Partial Aggregation
In Xγ F (R

./
Cj
S), R has the early partial aggregation property if all the aggregate functions are

decomposable and they use attributes from R.

� Theorem 8.3 Double Grouping
If R does not have the invariant grouping property because Condition 1 does not hold, but it has
the early partial aggregation property, then

Xγ F (R
./
Cj
S) ≡ Xγ Fg

((X∪A(Cj)−A(S)γ Fl
(R)) ./Cj

S) (8.10)

8.4. Second Case: Double Grouping 161

Proof
For the early partial aggregation property and the rule 8.6, with B = A ∪ {fk}:

Xγ F (R
./

fk=pk
S) ≡ Xγ Fg

(X∪{fk}γ Fl
(R ./

fk=pk
S))

for Theorem 8.2

Xγ F (R
./

fk=pk
S) ≡ Xγ Fg

(πbX∪{fk}∪Fl
((X∪{fk}−A(S)γ Fl

(R)) ./
fk=pk

S))

Finally, using rule 8.1 we end up with:

Xγ F (R
./

fk=pk
S) ≡ Xγ Fg

(X∪{fk}−A(S)γ Fl
(R)) ./

fk=pk
S) �

Example 8.3
Consider the query

SELECT Category, SUM(Qty) AS Amt
FROM Orders, Products
WHERE ProductFK = ProductPK
GROUP BY Category;

represented with the logical tree

Categoryγ SUM(Qty) AS Amt

./
ProductFK = ProductPK

Orders Products

Since the fact table Orders does not have the invariant grouping property, but it does have the early
partial aggregation property, the logical query tree can be transformed as follows:

Categoryγ SUM(Amt) AS Amt

Category, ProductFKγ SUM(Qty) AS Amt

./
ProductFK = ProductPK

Orders Products

Categoryγ SUM(Amt) AS Amt

./
ProductFK = ProductPK

ProductFKγ SUM(Qty) AS Amt

Orders

Products

Observation
The early partial aggregation property can also be exploited in the following cases to do a group-by
before the join:

8.5. Third Case: Grouping and Counting 162

– Having. We assume that the SQL query has a HAVING clause that cannot be transformed into a re-
striction before the group-by. If the early partial aggregation property holds, then the restriction due
to the HAVING clause cannot be moved together with the γ operator, but must be applied to the result
of the second one.

– Star query. Let R be the fact table and Si a set of n dimensional tables joined with R:

Xγ F (R
./
Cj
{S1, . . . , Sn})

If (a) X 6→ fk1fk2 . . . fkn , with X the grouping attributes of R ./
Cj
{S1, . . . , Sn} and fk1fk2 . . . fkn

the foreign keys of R for the dimensional tables used in the joins, and (b) R has the early partial
aggregation property, then

Xγ F (R
./
Cj
{S1, . . . , Sn}) ≡

Xγ Fg
((X∪A(Cj)−A({S1,...,Sn}))γ Fl

(R)) ./Cj
{S1, . . . , Sn})

8.5 Third Case: Grouping and Counting

The following theorem considers the case called foreign relation aggregate in [Chaudhuri and Shim,
1994] and eager count in [Yan and Larson, 1995], when neither the invariant grouping property, nor the
partial aggregation property hold because of aggregate functions that use attributes not in R, the table
where the group-by must be moved, as in the following example:

SELECT PName, SUM(Cost) AS C
FROM Orders, Products
WHERE ProductFK = ProductPK
GROUP BY PName;

To move the group-by on the fact table in this kind of queries too, the idea is to exploit the equivalence 8.7
to derive the aggregate functions values from the number of elements of the partitions generated by the
moved group-by.

� Theorem 8.4 Grouping and Counting
If R does not have the invariant grouping property because there are decomposable aggregate
functions in G ⊆ F that use attributes in S (the Condition 2 does not hold), then

Xγ F (R
./
Cj
S) ≡ πbX∪(F−G)∪Z((8.11)

(X∪A(Cj)−A(S)γ (F−G)∪{COUNT(∗) AS GBCount}(R))
./
Cj
S)

where Z is a set of expressions such that 3

– Ai × GBCount AS Idej ∈ Z, if f(Ai) ∈ G is SUM(Ai) AS Idej ,
– Idej ∈ Z, if f(Ai) ∈ G is MIN(Ai) AS Idej , MAX(Ai) AS Idej , AVG(Ai) AS Idej ,
– GBCount AS Idej ∈ Z, if f(Ai) ∈ G is COUNT(Ai) AS Idej .

Proof
For the sake of simplicity, assume that there is only one attribute A of S, and F = G. Since
X → fk → pk → A, using rule 8.7:

3. We assume that an aggregate function f is renamed with f AS Ide

8.5. Third Case: Grouping and Counting 163

Xγ F (R
./

fk=pk
S) ≡ πbX∪Z(X∪{A}γ COUNT(∗) AS GBCount(R

./
fk=pk

S))

for Theorem 8.2

Xγ F (R
./

fk=pk
S) ≡

πbX∪Z(π
b
X∪{A}∪{GBCount}((X∪A(Cj)−A(S)γ COUNT(∗) AS GBCount(R))

./
fk=pk

S))

sinceX∪Z is a set of expressions that use only attributes fromX∪{A}∪{GBCount}, the internal
π is superfluous, and we end up with:

Xγ F (R
./

fk=pk
S) ≡ πbX∪Z((X∪A(Cj)−A(S)γ COUNT(∗) AS GBCount(R))

./
fk=pk

S) �

Example 8.4
Consider the query:

SELECT PName, SUM(Cost) AS C
FROM Orders, Products
WHERE ProductFK = ProductPK
GROUP BY PName;

represented with the logical tree

PNameγ SUM(Cost) AS C

./
ProductFK = ProductPK

Orders Products

Because of the foreign relation aggregate, and PName → ProductFK holds, the logical query tree
can be transformed as follows:

πbPName, Cost × GBCount AS C

./
ProductFK = ProductPK

ProductFKγ COUNT(*) AS GBCount

Orders

Products

Observation
The equivalence 8.11 can also be exploited in the following cases to do a group-by before the join:

– Having. We assume that the SQL query has a HAVING clause that cannot be transformed into a re-
striction before the group-by. If the restriction due to the HAVING clause is different from a predicate

8.6. Summary 164

on COUNT(∗), it cannot be moved together with the γ operator, but must be applied to the result of the
projection operator.

– Star query. Let R be the fact table and Si a set of n dimensional tables joined with R:

Xγ F (R
./
Cj
{S1, . . . , Sn})

If (a) X → fk1fk2 . . . fkn , with fk1fk2 . . . fkn the foreign keys of R for the dimensional tables used
in the joins, and (b) F = H ∪G, with H a set of aggregate functions that use attributes in R, and G
a set of decomposable aggregate functions {f(Ai)} that use dimensional attributes Ai, then

Xγ F (R
./
Cj
{S1, . . . , Sn})) ≡

πbX∪H∪Z((X∪A(Cj)−A({S1,...,Sn})γH∪{COUNT(∗) AS GBCount}(R))
./
Cj
{S1, . . . , Sn})

8.5.1 Finale

In the case of an expression XγF (R
./

fk=pk
S) that does not satisfy the condition for the application of the

equivalence rule 8.11 because the join attribute fk fromR is not determined by the grouping attributesX
from R ./

Cj
S, but the aggregate functions are decomposable, the group-by can be brought forward using

the equivalence rules 8.10 and 8.11:

Xγ F (R
./

fk=pk
S) ≡ Xγ Fg

(X∪{fk}γ Fl
(R ./

fk=pk
S)) using 8.10

≡ Xγ Fg
(πbX∪H∪Z((X∪{fk}−A(S)γ H∪{COUNT(∗) AS GBCount}(R))

./
fk=pk

S)) using 8.11

8.6 Summary

– The star query optimizer can produce better access plans when considering the possibility of bringing
forward group-by, usually not considered by traditional optimizers of relational systems.

– If the pre-grouping transformation is possible, the optimizer chooses the best physical plan for two
logical plans with or without the pre-grouping.

– Three cases were shown in which the pre-grouping transformation is possible for star queries: invari-
ant grouping, double grouping and grouping and counting.

Chapter 9

QUERY REWRITING USING
MATERIALIZED VIEWS

Materialized views can yield substantial reductions in queries’ execution time, especially in the case of
grouping operations of large fact tables. To exploit this possibility, the query optimizer has to determine
which view is useful to perform a query rewrite and how to use the selected view. We present two
algorithms to solve the problem by making some simplifying assumptions.

9.1 Introduction

In traditional DBMSs views are used frequently for different reasons and especially to simplify particu-
larly complex query writing or to write queries that would not be possible without using views. The use
of views is explicit in queries and, when possible, they are automatically rewritten before being executed
by replacing the expression defining the view instead of using it before optimizing queries.

OLAP queries are typically aggregate queries. Analysts want fast answers and over large data sets. This
is why it is normal to choose a subset of aggregate queries, to store their results (views materialization),
and then to use them to process expensive OLAP queries efficiently by doing just few additional compu-
tations (query rewriting). Unlike how views are traditionally used, query rewriting is done automatically
by the system, without the user being aware of the existence of materialized views.

The query optimizer is responsible for determining if it is possible to rewrite a query Q, defined on
the data warehouse tables, in an equivalent form Q′, which uses a materialized view V and produces a
cheaper execution plan. Intuitively, V can be used to rewrite Q if (a) it has the attributes that are needed
by Q and (b) it calculates all the records that are needed to produce the result of Q. The problem has
been studied from different points of view and for a review see [Halevy, 2001]. In the following, the idea
of two solutions will be presented making the following simplifying assumptions:1

1. The data warehouse has a star schema, with foreign keys in the fact table and primary keys in the
dimensional tables without null values and surrogates keys, i.e. each of them with a single attribute.
Foreign and primary keys are the only attributes of the star schema with the same names and data
types.

For simplicity, we assume also that

a) The fact and dimensional tables have attributes without null values.
b) The fact table foreign keys are used for different dimensional tables.
c) For each dimensional table Di only the information on the functional dependencies X → Y , with
X a key ofDi, is available. In other words we will not consider dimensional attributes hierarchies.

d) A materialized view V is defined in SQL with the command:

CREATE MATERIALIZED VIEW V
BUILD IMMEDIATE ENABLE QUERY REWRITE AS <SQL query>;

1. We are grateful to Enrico Detti for his contribution to the preparation of this chapter.

9.1. Introduction 166

but in the following, for brevity, the full command will not be used and the view defining query
only will be used.

2. The queries for Q and the view V definitions always use the fact table or they are star queries, that
is they use natural joins between the fact and dimension tables. The joins cannot be eliminated by
query rewriting.

3. The queries for Q and the view V definitions have the structure SELECT-FROM-WHERE, usually with
GROUP BY and HAVING, but without ORDER BY, DISTINCT, subqueries and range variables. The SE-
LECT and HAVING clauses may contain the aggregate functions MIN, MAX, SUM and COUNT. The AVG
function is not considered because it can be computed using SUM and COUNT.

In the SELECT attributes renaming is allowed only for aggregate functions.

A condition in the WHERE is a logical product of predicate of the kind Aθ c, with A an attribute, c a
constant and θ ∈ {=, <,≤, >,≥}.

4. The aggregate functions in the view definition have argument ‘∗’ or one attribute not in the set of
the grouping attributes. We do not consider aggregation computations over multiple attributes, for
example SUM(A ∗ B + C).

5. The rewriting of a query uses one view only.

A solution for the problem of how to rewrite a query will be presented considering the logical query and
view trees. But once it has been established that a query can be rewritten, an optimizer task is to find the
best access plan to execute it, comparing the cost of the rewritten query and original query to choose the
cheaper execution plan. In the algebraic representation of a query we assume that:

– The queries for Q and V are represented with a logical tree A with the following structure, called
normal form, that has all aggregations and selections above all the joins. The normal form makes
reasoning about query rewriting much easier.

AT = πbLT
(σHT

(γGT
(σCT

(./ RT)x)))

where T is either Q or V and

– ./ RT is the natural join of all tables in the set RT , or a fact table.
– CT is a conjunctive condition and A(CT) is the set of attributes in CT .
– γGT

is an abbreviation for g(T)γa(T), where g(T) is the set of grouping attributes and a(T) is the
set of the aggregate functions, renamed with AS;

– HT is a conjunctive condition on the grouping result.
– LT is the set of result attributes.

Some relational algebra operator may not be in the logical tree A.
From the assumption made, it follows that the joins in Q and V are lossless and non-duplicating:

� Definition 9.1 Lossless Join
A join F ./ D is lossless if for each record of F the join condition is satisfied by at least a record
of D.

� Definition 9.2 Non-duplicating Join
A join F ./ D is non-duplicating if for each record of F the join condition is satisfied by at most
a record of D.

In a star query the join F ./ D is lossless because the foreign keys of F do not have null values, and it
is non-duplicating because the join attribute of D is a key.

In the following we will use the star schema in Figure 9.1 (keys are in boldface) and the notations:

9.1. Introduction 167

Orders

OrderNo
OrderLine
Product
Agent
Market
Qty
ExtdPrice
Discount
Day
Month
Year

Products
Product
PName
PUnitPrice
PCategory
PCost

Agents

Agent
AName
APhone
AArea

Markets
Market
MCity
MRegion
MCountry

Figure 9.1: A star schema example

– AQ is the logical query tree, and AV is the logical view tree.
– εQ is a node of AQ, and µV is a node of AV .
– AQ(εQ) is a subtree of AQ with root εQ, and AV (µV) is a subtree of AV with root µV .
– The records of AQ(εQ) are those returned by the logical tree.
– Node and algebraic operator of a logical tree are equivalent terms.

Among the approaches to rewriting a query Q in terms of a materialized view V , we will consider the
following ones (Figure 9.2):

Transformed Logical View Plan

Logical
View Plan

Logical
View Plan

(a) With a compensation on the view

Transformed Logical Query Plan

Logical
Query Plan

Logical
View Plan

(b) With a transformation of the query

Figure 9.2: Query rewriting approaches

9.2. Approach with a Compensation on the View 168

1. Approach with a compensation on V. The idea is to match pairs of nodes of AQ and AV from the
leaves to the roots to find a compensation α(AV) on the AV root, that is a set of logical operations in
order to get a new logical tree α(AV) equivalent to that of AQ. Then AV in α(AV) is replaced with
view V to get the rewriting of Q with the use of V [Zaharioudakis et al., 2000].

2. Approach with a transformation of Q. The idea is to rewrite AQ, using the relational algebra equiva-
lence rules, in order to get a new logical tree α(AQ) with a subtree equivalent to the logical view tree
AV . Then AV in α(AQ) is replaced with view V to get the rewriting of Q with the use of V [Gupta
et al., 1995].

Let us see first an algorithm using the first approach, and then we will only see with an example how to
proceed using the second approach.

9.2 Approach with a Compensation on the View

The algorithm to rewrite Q using V is based on the notions of match and compensation, between the
logical trees AQ and AV , defined as follows.

� Definition 9.3 Logical Operators Match
A logical operator εQ matches a logical operator µV if the records of AQ(εQ) and AV (µV) are
the same.

� Definition 9.4 Logical Operators Compensation
A logical operator εQ partially matches a logical operator µV if the records AQ(εQ) and AV (µV)
are different, but it is possible to add on the root of the subtree AV (µV) a logical tree α(µV),
called compensation, such that the result of α(µV) is the same as AQ(εQ).

� Definition 9.5 Query and View Match
We say that Q matches V , if there is a compensation between the roots of AQ and AV .

� Definition 9.6
Let CQ and CV be some logical conditions. We say that CV is less restrictive than CQ, if the
records satisfying CQ are a subset of those satisfying CV (CQ logically implies CV).

To find a rewriting of Q using the view V , the algorithm looks for a compensation between the roots of
AQ and AV . The compensation is determined by matching the nodes of the two logical trees, from the
leaves up to the roots.

When a node εQ of AQ does not match a node µV of AV , the algorithm checks if certain conditions
are satisfied, depending on the kind of nodes, as it will be shown in the following. If on the operand of
µV there is a compensation α, it must be possible to float it on µV (Figure 9.3).

� Definition 9.7
The float of a compensation α on µV requires only the execution of the operations in α necessary
to compute the result of εQ using that of µV . If some necessary attributes are not available, before
the float of α, they are retrieved with a compensation on the the result of µV using lossless and
non-duplicating joins with the tables that contain them.

Let us define an algorithm Rewrite to find the compensation on the root of V to rewriteQ, by considering
only certain cases, and for each of them under which conditions it is possible to proceed with the rewriting
of Q. The algorithm for the general case is more complex, and its description is outside the scope of this
text.

9.2. Approach with a Compensation on the View 169

πbLQ

σHQ

g(Q)γ a(Q)

σCQ

./
JQ

.

(a) AQ

πbLV

σHV

g(V)γ a(V)

σCV

./
JV

.

α′

flotation↑

α

(b) AV

Figure 9.3: The float of a compensation

9.2.1 First Case: Q and V with Groupings

The Q and V logical trees have the following normal form

AQ = γGQ
(σCQ

(./ RQ)) AV = γGV
(σCV

(./ RV))

and, for simplicity, let us assume that (a) the logical operators are all present, (b) the set grouping at-
tributes and the set of aggregate functions in γGQ

and γGV
are not empty, (c) RV ⊆ RQ.

If γGQ
and γGV

do not match, the problem is to decide whether a compensation exists to rewrite
γGQ

from γGV
. We will use the algorithm for computing the closure of a set of attributes presented in

the previous chapter to establish if a particular functional dependency can be inferred from the set F of
functional dependencies which hold in Q.

Rewriting Algorithm

The algorithm proceeds as follows:2

Algorithm Rewriting
Input Logical trees of Q and V
Output Logical tree for rewriting of Q

1. (./) Under the hypothesis that RV ⊆ RQ, if the joins do not match, then in RQ there are the tables
W not in RV , W = RQ −RV , and a compensation α./ is added to the view operator as follows:

α./ = (./W (AV (./)))

2. A general algorithms is beyond the scope of the book, because of its complexity. The cases treatable, however, are among
the most common in practice.

9.2. Approach with a Compensation on the View 170

The compensation is a join on (./ RV), because in the fact table in RV there are the foreign keys for
the tables W .

The compensation can float on σCV
and then on γGV

, if in g(V) there are the foreign keys for the
relations W = RQ −RV , otherwise the query is not rewritable.

2. (σ) If on the operand there is a compensation α./, it floats on the operator σCV
. Let AV (σCV

) be
the root of the compensation tree on σCV

.

If the selections do not match, and CQ = CV ∧ C, with C a condition on the result of AV (σCV
),

then the following compensation is added

ασ = σC(AV (σCV
))

The compensation can float on γGV
if it uses only attributes in g(V), or attributes of relations with

foreign keys in g(V), otherwise the query is not rewritable.

3. (γ) If on the operand there is a compensation ασ, it floats on the operator γGV
. Let AV (γGV

) be the
root of the compensation tree on γGV

, and A(AV (γGV
)) be the set of the attributes in AV (γGV

).

Let us consider the following cases for matching first the grouping attributes and then the aggregate
functions to define a compensation on AV (γGV

), under the hypothesis that RV ⊆ RQ.

Grouping compensation
Let us consider the possible cases as follows:

(a) If

g(V)→ g(Q)

does not holds in Q then the query is not rewritable.
(b) The rewriting is without grouping when the groupings in Q and V partition data into the same

number of groups, i.e. if

g(Q)→ g(V) ∧ g(V)→ g(Q)

holds in Q and the Q attributes A ∈ A(R) not in A(AV (γGV
)) can be retrieved with a lossless

and non-duplicating join of AV (γGV
) with R. For example, A(AV (γGV

)) contains the foreign
key of R.

(c) The rewriting is with grouping g(Q) when the grouping in V partitions data into more groups than
the grouping in Q, i.e., if only

g(V)→ g(Q)

holds in Q and the Q attributes A ∈ A(R) not in A(AV (γGV
)) can be retrieved with a lossless

and non-duplicating join of AV (γGV
) with R.

Aggregate compensation.
Let fQ = AGG(A) AS IdeQ be an aggregate function in a(Q), with AGG one of the aggregate func-
tions MIN, MAX, SUM, and COUNT.

We consider the following cases to rewrite fQ with a function fV = AGG(A) AS IdeV in a(V), and to
define the compensation on AV (γGV

).

(a) If the grouping compensation is without grouping, then fQ is rewritten with the following rules:

9.2. Approach with a Compensation on the View 171

i. If AGG(A) of fQ is COUNT,3 COUNT(DISTINCT A), SUM(A), SUM(DISTINCT A), MAX(A) or MIN(A),
and the same aggregate function exists in a(V), then

αγ = πbg(Q)∪(a(Q)−{fQ}∪{IdeQ})(AV (γGV
))

if IdeQ = IdeV , otherwise

αγ = πbg(Q)∪(a(Q)−{fQ}∪{IdeV AS IdeQ})(AV (γGV
))

ii. If AGG(A) of fQ is SUM(A), a COUNT AS IdeV exists in a(V), and
– A ∈ A(AV (γGV

)), then

αγ = πbg(Q)∪(a(Q)−{fQ}∪{(A×IdeV)AS IdeQ})(AV (γGV
))

– A 6∈ A(AV (γGV
)), A ∈ A(R) and A(AV (γGV

)) contains the foreign key fkR for R,
then

αγ = πbg(Q)∪(a(Q)−{fQ}∪{(A×IdeV)AS IdeQ})(AV (γGV
) ./ R))

(b) If the grouping compensation is with grouping, then fQ is rewritten with the following rules:

i. If fQ = MAX(A) AS IdeQ and
A. fV = MAX(A) AS IdeV , then

αγ = g(Q)γa(Q)−{fQ}∪{MAX(IdeV)AS IdeQ}(AV (γGV
))

B. A ∈ g(V) then

αγ = g(Q)γa(Q)−{fQ}∪{(MAX(A) AS IdeQ}(AV (γGV
))

C. A 6∈ A(AV (γGV
)), A ∈ A(R) and A(AV (γGV

)) contains the foreign key fkR for R,
then

αγ = g(Q)γa(Q)−{fQ}∪{MAX(A) AS IdeQ}(AV (γGV
) ./ R))

ii. If fQ = MIN(A), then the rewriting of MIN(A) is similar to MAX(A).
iii. If A ∈ A(RV) and

A. fQ = COUNT(A) AS IdeQ and fV = COUNT AS IdeV , then

αγ = g(Q)γa(Q)−{fQ}∪{SUM(IdeV)AS IdeQ}(AV (γGV
))

B. fQ = SUM(A) AS IdeQ, fV = COUNT AS IdeV and
– A ∈ A(AV (γGV

)), then

αγ = g(Q)γa(Q)−{fQ}∪{SUM(A× IdeV)AS IdeQ}(AV (γGV
))

– A 6∈ A(AV (γGV
)), A ∈ A(R) and A(AV (γGV

)) contains the foreign key fkR for R,
then

αγ = g(Q)γa(Q)−{fQ}∪{SUM(A× IdeV)AS IdeQ}(AV (γGV
) ./ R))

3. For the hypothesis that aggregate attributes A does not have null values, COUNT may be COUNT(∗) or COUNT(A).

9.2. Approach with a Compensation on the View 172

C. fQ = SUM(A) AS IdeQ and fV = SUM(A) AS IdeV , then

αγ = g(Q)γa(Q)−{fQ}∪{SUM(IdeV)AS IdeQ}(AV (γGV
))

iv. If A 6∈ A(RV), or A = ∗, a fV = COUNT AS IdeV exists in a(V), and
A. fQ = SUM(A) AS IdeQ, then

αγ = g(Q)γa(Q)−{fQ}∪{SUM(A× IdeV)AS IdeQ}(AV (γGV
))

B. fQ = COUNT AS IdeQ, then

αγ = g(Q)γa(Q)−{fQ}∪{SUM(IdeV)AS IdeQ}(AV (γGV
))

4. Rewriting
The compensation αγ(AV) is the rewriting of Q.

Example 9.1
Let us consider the following Q and V

Q: SELECT Product, SUM(PCost) AS qS
FROM Orders NATURAL JOIN Products
GROUP BY Product;

V: SELECT Product, PCost, COUNT(∗) AS vC
FROM Orders NATURAL JOIN Products
GROUP BY Product, PCost;

represented with the logical trees

Productγ SUM(PCost) AS qS

./

Orders Products

(a) AQ

Product, PCostγ COUNT(∗) AS vC

./

Orders Products

(b) AV

The joins match, and a grouping compensation is required without grouping because

– g(V)→ g(Q) trivially holds since g(Q) ⊂ g(V).
– g(Q)→ g(V) holds in Q since Product+ = {Product, . . . , PCost}

The rewriting requires an aggregate compensation of SUM(PCost) in Q as shown in the figure:

9.2. Approach with a Compensation on the View 173

Productγ SUM(PCost) AS qS

./

Orders Products

(a) AQ

πbProduct, (PCost × vC) AS qS

Product, PCostγ COUNT(∗) AS vC

./

Orders Products

(b) AV

The compensation on V is the rewriting of Q.

Rewriting of Q: SELECT Product, (PCost × vC) AS qS
FROM V;

Example 9.2
Let us consider the following Q and V

Q: SELECT Market, MCity, COUNT(∗) AS qC
FROM Orders NATURAL JOIN Markets
WHERE Year = 2010
GROUP BY Market, MCity;

V: SELECT Market, Year, COUNT(∗) AS vC
FROM Orders
GROUP BY Market, Year;

represented with the logical trees

Market, MCityγ COUNT(∗) AS qC

σYear= 2010

./

Orders Markets

(a) AQ

Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

Since the joins do not match, a compensation is needed, as shown in the figure:

Market, MCityγ COUNT(∗) AS qC

σYear= 2010

./

Orders Markets

(a) AQ

./

Markets

Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

Since the selections do not match, a compensation is needed, as shown in the figure:

9.2. Approach with a Compensation on the View 174

Market, MCityγ COUNT(∗) AS qC

σYear= 2010

./

Orders Markets

(a) AQ

σYear= 2010

./

Markets

Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

The compensation on the operand of γV floats and a grouping compensation is required without
grouping because

– g(V)→ g(Q) holds in Q since

(Market, Year)+ = {Market, Year, MCity, . . .}

– g(Q)→ g(V) holds in Q since Year = 2010 and

(Market, MCity)+ = {Market, MCity, Year, . . .}

The rewriting requires an aggregate compensation of COUNT(∗) in Q as shown in the figure:

Market, MCityγ COUNT(∗) AS qC

σYear= 2010

./

Orders Markets

(a) AQ

πbMarket, MCity, vC AS qC

σYear= 2010

./

Markets Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

The compensation on V is the rewriting of Q.

Rewriting of Q: SELECT Market, MCity, vC AS qC
FROM V NATURAL JOIN Markets
WHERE Year = 2010;

Example 9.3
Let us consider the following Q and V

Q: SELECT PCategory, SUM(ExtdPrice) AS qS
FROM Orders NATURAL JOIN Products
GROUP BY PCategory;

V: SELECT Product, ExtdPrice, COUNT(∗) AS vC
FROM Orders
GROUP BY Product, ExtdPrice;

9.2. Approach with a Compensation on the View 175

represented with the logical trees

PCategoryγ SUM(ExtdPrice) AS qS

./

Orders Products

(a) AQ

Product, ExtdPriceγ COUNT(∗) AS vC

Orders

(b) AV

Since the joins do not match, a compensation is added as shown in the figure:

PCategoryγ SUM(ExtdPrice) AS qS

./

Orders Products

(a) AQ

./

Products

Product, ExtdPriceγ COUNT(∗) AS vC

Orders

(b) AV

The compensation on the operand of γV floats and a grouping compensation is required with group-
ing because

– g(V)→ g(Q) only holds in Q since
(Product, ExtdPrice)+ = {Product, ExtdPrice, . . . , PCategory},

– in g(Q) there are attributes from Products not in g(V), but in g(V) there is the foreign key for
Products, and the join is already in the compensation on γGV

,
– the aggregation attribute ExtdPrice in Q is in g(V).

The rewriting requires an aggregate compensation of SUM(ExtdPrice) in Q as shown in the figure:

PCategoryγ SUM(ExtdPrice) AS qS

./

Orders Products

(a) AQ

PCategoryγ SUM(ExtdPrice × vC) AS qS

./

Products

Product, ExtdPriceγ COUNT(∗) AS vC

Orders

(b) AV

The compensation on V is the rewriting of Q.

Rewriting of Q: SELECT PCategory, SUM(ExtdPrice × vC) AS qS
FROM V NATURAL JOIN Products
GROUP BY PCategory;

9.2. Approach with a Compensation on the View 176

Example 9.4
Let us consider the following Q and V

Q: SELECT PName, SUM(PUnitPrice) AS qS,
FROM Orders NATURAL JOIN Products
GROUP BY PName;

V: SELECT Product, COUNT(∗) AS vC
FROM Orders
GROUP BY Product;

represented with the logical trees:

PNameγ SUM(PUnitPrice) AS qS

./

Orders Products

(a) AQ

Productγ COUNT(∗) AS vC

Orders

(b) AV

Let us assume that PName is another key of the table Products.

The join operations do not match. Therefore, a compensation is added as shown in the figure:

PNameγ SUM(PUnitPrice) AS qS

./

Orders Products

(a) AQ

./

Products

Productγ COUNT(∗) AS vC

Orders

(b) AV

The compensation on the operand of γV floats and a grouping compensation is required without
grouping because

– g(V)→ g(Q) holds in Q since Product+ = {Product, PName, . . .}.
– g(Q)→ g(V) holds in Q since PName+ = {PName, Product, . . .}

The rewriting requires an aggregate compensation only with a project, as shown in the figure:

PNameγ SUM(PUnitPrice) AS qS

./

Orders Products

(a) AQ

πbPName, (PUnitPrice × vC) AS qS

./

Products

Productγ COUNT(∗) AS vC

Orders

(b) AV

The compensation on V is the rewriting of Q.

9.2. Approach with a Compensation on the View 177

Q’: SELECT PName, (PUnitPrice × vC) AS qS
FROM V NATURAL JOIN Products;

9.2.2 Second Case: Q and V with Groupings and HAVING

The Q and V logical trees have the following normal form

AQ = πbLQ
(σHQ

(γGQ
(σCQ

(./ RQ)))) AV = πbLV
(σHV

(γGV
(σCV

(./ RV))))

The following example shows how the HAVING elimination might be necessary to rewrite a query.

Example 9.5
Let us consider the following Q and V

Q: SELECT Product, MAX(Qty) AS qM
FROM Orders
WHERE ExtdPrice > 100
GROUP BY Product
HAVING MAX(Qty) > 20;

V: SELECT Product, ExtdPrice, Qty
FROM Orders
WHERE Qty > 10;

represented with the logical trees

σM> 20

Productγ MAX(Qty) AS qM

σExtdPrice> 100

Orders

(a) AQ

πbProduct, ExtdPrice, Qty

σQty> 10

Orders

(b) AV

Since the selections do not match, Q is not rewritable using V . However, applying the algebraic
equivalence rule that allows us to delete the HAVING by pushing down the selection condition on the
grouping, we obtain the following logical trees:

Productγ MAX(Qty) AS qM

σExtdPrice> 100ANDQty> 20

Orders

(a) AQ

πbProduct, ExtdPrice, Qty

σQty> 10

Orders

(b) AV

Since the selection in V is not more restrictive than that in Q, Q is rewritable using V with the
following compensation:

9.2. Approach with a Compensation on the View 178

Productγ MAX(Qty) AS qM

σExtdPrice> 100ANDQty> 20

Orders

(a) AQ

Productγ MAX(Qty) AS qM

σExtdPrice> 100ANDQty> 20

πbProduct, ExtdPrice, Qty

σQty> 10

Orders

(b) AV

To decide whether Q is rewritable using V it is necessary to establish whether there is a correspondence
between the roots of their logical trees, considering that:

1. If Q has the structure σQ(γQ(EQ)) and V has the structure σV (γV (EV)), then

(a) If the nodes γQ and γV match, then we must check whether σQ and σV use the same aggregate
function and the condition σV is not more restrictive than that in σQ.

(b) If γQ and γV do not match, we must check whether the compensation α might float on σV , and
then if there is a compensation between σQ and σV .
For the floatation of α on σV the following rules hold:

i) If α does not contain a γ, then α always floats on σV .
ii) If α contains a γ, then α floats on σV only if γ is applied to a selection σϕc , with ϕV not

more restrictive than ϕc, because σϕc guarantees that with σV the records of γV , necessary to
calculate the functions in γ, are not deleted.

(c) If on the operand of γV there is a compensation α with a selection σϕc , then
iii) σϕc floats on γV if it satisfies the condition for the algebraic equivalence rules for doing the σ

before a γ, without considering the aggregate functions in γV which are not used to compute
the aggregation functions of γQ.
This rule follows from the following algebraic equivalence rule, where F is an aggregation
function different from MAX, X a set of attributes of R, B and D attributes of R:

πbX,M (σM >v(XγMAX(B)ASM,F (D)AS f (R))) ≡

πbX,M (XγMAX(B)ASM,F (D)AS f (σB>v(R)))

Note that a function different from MAX can have different values in the two expressions, but
they are eliminated with the projections.
The equivalence rule holds also replacing > with ≥, or replacing MAX with MIN and > with <
or ≤.

iv) If σϕc uses attributes Y different from the grouping attributes of γV , σϕc can float on γV if Y
can be retrieved from the results of γV with a lossless and non-duplicating join compensation
with the relations containing them, and σϕc floats on the compensation expression.

2. If Q has the structure σQ(γQ(EQ)) and V has the structure γV (EV), then it must be possible to add
σQ to any compensation on γV .

3. IfQ has the structure γQ(EQ) and V has the structure σV (γV (EV)), then it must be possible to float
on σV any compensation on γV . If EQ is without a selection, then V cannot be used to rewrite Q
because the having clause in the view may eliminates certain groups of data needed by Q.

9.2. Approach with a Compensation on the View 179

Example 9.6
Let us consider the following Q and V

Q: SELECT Market, COUNT(∗) AS qC
FROM Orders
GROUP BY Market
HAVING COUNT(∗) > 2;

V: SELECT Market, Year, COUNT(∗) AS vC
FROM Orders
GROUP BY Market, Year;

represented with the logical trees

σqC> 2

Marketγ COUNT(∗) AS qC

Orders

(a) AQ

Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

A grouping compensation is required on the root of V because g(V) → g(Q) only trivially holds.
A rewriting with grouping and an aggregate compensation of COUNT(∗) in Q are performed, and
then a selection is added to match σQ, as is shown in the figure:

σqC> 2

Marketγ COUNT(∗) AS qC

Orders

(a) AQ

σqC> 2

Marketγ SUM(vC) AS qC

Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

The compensation on V is the rewriting of Q.

Rewriting of Q: SELECT Market, SUM(vC) AS qC
FROM V
GROUP BY Market
HAVING SUM(vC) > 2;

9.2. Approach with a Compensation on the View 180

Example 9.7
Let us consider the following Q and V

Q: SELECT Market, COUNT(∗) AS qC
FROM Orders
GROUP BY Market
HAVING COUNT(∗) > 2;

V: SELECT Market, Year, COUNT(∗) AS vC
FROM Orders
GROUP BY Market, Year
HAVING COUNT(∗) > 1;

represented with the logical trees

σqC> 2

Marketγ COUNT(∗) AS qC

Orders

(a) AQ

σvC> 1

Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

Since g(V)→ g(Q) only trivially holds, a rewriting with grouping and an aggregate compensation
of COUNT(∗) in Q are performed, as is shown in the figure:

σqC> 2

Marketγ COUNT(∗) AS qC

Orders

(a) AQ

Marketγ SUM(vC) AS qC

σvC> 1

Market, Yearγ COUNT(∗) AS vC

Orders

(b) AV

Considering then the σ, the compensation cannot float on σV , and so the rewriting of Q is not
possible.

Example 9.8
Let us consider the following Q and V

Q: SELECT Market, MAX(Qty) AS qM
FROM Orders
WHERE Qty > 200
GROUP BY Market
HAVING MAX(Qty) < 1000;

V: SELECT Market, Year, MAX(Qty) AS vM, SUM(Qty) AS vS
FROM Orders
GROUP BY Market, Year
HAVING MAX(Qty) > 100;

9.2. Approach with a Compensation on the View 181

represented with the logical trees

σqM< 1000

Marketγ MAX(Qty) AS qM

σQty> 200

Orders

(a) AQ

σvM> 100

Market, Yearγ Max(Qty) AS vM, SUM(Qty) AS vS

Orders

(b) AV

Since the selections do not match, a compensation is needed, as shown in the figure:

σqM< 1000

Marketγ MAX(Qty) AS qM

σQty> 200

Orders

(a) AQ

σQty> 200

σvM> 100

Market, Yearγ Max(Qty) AS vM, SUM(Qty) AS vS

Orders

(b) AV

The compensationσQty> 200 can then float on γV (condition 1.c.iii), because the aggregate function
SUM(Qty) AS vS is not used in γQ, and so the selection satisfies the condition for being pulled up
above the group-by with respect to MAX(Qty) AS vM. Then, since g(V)→ g(Q) only trivially holds,
a rewriting with grouping is performed too.

σqM< 1000

Marketγ MAX(Qty) AS qM

σQty> 200

Orders

(a) AQ

Marketγ MAX(vM) AS qM

σvM> 200

σvM> 100

Market, Yearγ Max(Qty) AS vM, SUM(Qty) AS vS

Orders

(b) AV

The compensation on γV can float on σV (condition 1.b.ii), and so the rewriting algorithm finds
the following match of Q with V :

9.3. Approach with a Transformation of the Query 182

σqM< 1000

Marketγ MAX(Qty) AS qM

σQty> 200

Orders

(a) AQ

σqM< 1000

Marketγ MAX(vM) AS qM

σvM> 200

σvM> 100

Market, Yearγ Max(Qty) AS vM, SUM(Qty) AS vS

Orders

(b) AV

The compensation on V is the rewriting of Q.

Rewriting of Q: SELECT Market, MAX(vM) AS qM
FROM V
WHERE vM > 200
GROUP BY Market
HAVING MAX(vM) < 1000;

9.3 Approach with a Transformation of the Query

The idea is to rewrite the logical tree of Q using algebraic equivalence rules, in particular those to push
the group-by operation past one or more joins, in order to obtain a lower portion of the tree equivalent to
the query tree for V , and the upper portion as the transformed query tree Q using V .

For the sake of simplicity, let us assume that the queries Q and V have the following normal form:

AQ = γGQ
(σCQ

(./ RQ)) AV = γGV
(σCV

(./ RV))

with g(Q) ⊂ g(V), so that g(V) → g(Q) only holds in Q, and the aggregate functions of γGQ
are

computable from the aggregate function of γGV
.

The steps of the algorithm are simply outlined below.

1. If the selections σ do not match, check that CQ = CV ∧ C.
2. If RQ 6= RV , rewrite the joins in the query so that the left subtree contains only the (./ RV).
3. If CV is not empty, push down its predicates in the selection conditions on the left subtree, which

becomes σCV
(./ RV).

4. Rewrite the grouping operator γGQ
as γGQtop

and γGQbot
, such that γGQtop

is equivalent to γGQ
, and

γGQbot
is equivalent to γGV

and can be pushed on
σCV

(./ RV).
5. Replace the subtree rooted at γGQbot

with view V to get the rewriting of Q in SQL.

Let us only illustrate how the algorithm is applied to a simple case. We leave to the reader the task of ap-
plying the algorithm to any of the previous examples, and to incorporate enhancements when necessary.

Example 9.9
Let us consider the following Q and V

9.3. Approach with a Transformation of the Query 183

Q: SELECT Year, SUM(Qty) AS qS
FROM Orders NATURAL JOIN Products NATURAL JOIN Markets
WHERE Year > 2010 AND MRegion = ’Toscana’
GROUP BY Year;

V: SELECT Product, Market, Year, SUM(Qty) AS vS
FROM Orders NATURAL JOIN Markets
WHERE MRegion = ’Toscana’
GROUP BY Product, Market, Year;

represented with the logical trees

Yearγ SUM(Qty) AS qS

σMRegion= ′Toscana′ ANDYear> 2010

./

./

Orders Products

Markets

(a) AQ

Product, Market, Yearγ SUM(Qty) AS vS

σRegione= ′Toscana′

./

Orders Markets

(b) AV

The selection condition σQ is more restrictive than σV , and since RQ 6= RV , the joins in the query
are rewritten so that the left subtree contains only the RV (logical query tree AQ′).
CV is pushed down on the left subtree (logical query tree AQ′′).
The grouping attributes of γGQ

(Year) are a proper subset of the grouping attributes of γGV
, and

so it is possible to split γGQ
to have a γGQbot

= γGV
, as shown in the figure (logical tree AQ′′).

The aggregate function of γGQtop
can be obtained from that of γGQbot

.

Yearγ SUM(Qty) AS qS

σMRegion= ′Toscana′ ANDYear> 2010

./

./

Orders Markets

Products

(c) AQ′

Yearγ SUM(vS) AS qS

Product, Market,Yearγ SUM(Qty) AS vS

σYear> 2010

./

σMRegion= ′Toscana′

./

Orders Markets

Products

(d) AQ′′

The γGQbot
can be pushed on the left subtree (logical query tree AQ′′′).

9.4. Summary 184

V

Yearγ SUM(vS) AS qS

σYear> 2010

./

Product, Market,Yearγ SUM(Qty) AS vS

σMRegion= ′Toscana′

./

Orders Markets

Products

(e) AQ′′′

The subtree rooted at γGQbot
is identical to V , so the rewriting of Q succeeds.

Rewriting of Q: SELECT Year, SUM(vS) AS qS
FROM V NATURAL JOIN Products
WHERE Year > 2010
GROUP BY Year;

9.4 Summary

– Analytic queries are typically aggregate queries. Analysts want fast answers and over large data sets.
This is why it is normal to choose a subset of aggregate queries, to store their results (views material-
ization), and then to use them to process expensive analytic queries efficiently by performing only a
few additional computations (query rewriting). Unlike how views are traditionally used, query rewrit-
ing is done automatically by the system, without the user being aware of the existence of materialized
views. Methods have been proposed to rewrite a given query using materialized views. Among the
possible approaches to the problem, two of them have been presented: approach with a compensation
on the view and approach with a transformation of the query.

– The approach with a compensation on the view tries to add an algebraic expression, called compen-
sation, on the root of the logical view tree in order to get a new logical tree equivalent to the logical
query tree.

– The approach with a transformation of the query tries to rewrite the logical query tree, using relational
algebra equivalence rules, in order to have a logical query tree with a subtree equivalent to the logical
view tree.

– Two general algorithms for both approaches are beyond the scope of the book, because of their com-
plexity. With appropriate simplifying assumptions only an algorithm for the approach with a com-
pensation on V has been presented. The cases treatable, however, are among the most common in
practice.

– The knowledge of an algorithm for rewriting queries to use a materialized view is useful to under-
stand, by analyzing the physical query plans of the system available, why a view is not used for some
critical queries and how to redefine it.

Appendix A

CASE STUDIES

A.1 Hospital

A hospital uses the database shown in Figure A.1 to store the following information about inpatients’
treatments.

Hospitalizations

Date
Duration
WaitingTime
Amount

Physician

SSN �K�
Name
Specialization
Phone

Patient
SSN �K�
Name
Gender
BirthDate
Address

Ward
Code �K�
Name
NumberOfBeds
Phone

Treatments
Code �K�
Description

Diagnosis

ICD �K�
Description

HasHad

Has

In

Needs

HasAdmitted

HasMade

Figure A.1: Conceptual design of a database for inpatients’ treatments

For each patient the information of interest is the SSN (Social Security Number), which is unique, the
name and the address.

A patient may be hospitalized several times, and each time the information of interest is the date, the
physician who admitted the patient, the ward assigned, the diagnosis, the duration in days of hospital-
ization, the number of days of waiting time for the hospitalization, the received treatment, and the billed
amount. For simplicity, let us assume that each patient may receive only one treatment from a given
physician on a given hospitalization.

For each hospital ward the information of interest is the code, which is unique, the name, the number
of beds and the phone.

For each treatment the information of interest is the code, which is unique, the description, and the
physician who carried it out.

For each diagnosis the information of interest is the ICD code, International Classification of Diseases,
which is unique, and its description.

A.1. Hospital 186

Give a conceptual and logical designs of a data mart assuming that the following examples of business
questions heve been collected during the user interviews:

1. Total billed amount for hospitalizations by diagnosis code and description, by month (year).
2. Total number of hospitalizations and billed amount by ward, by patient gender (age at date of admis-

sion, city, region).
3. Total billed amount, average length of stay and average waiting time by diagnosis code and descrip-

tion, by name (specialization) of the physician who admitted the patient.
4. Total billed amount, and average waiting time of admission by patient age (region), by treatment code

(description).

A.2. Airline Companies 187

A.2 Airline Companies

We want to analyze airline companies’ flights to compare them from the point of view of their ability to
fly with occupied seats and therefore to make profits.

For each flight the information of interest is the company name, the departure and the destination cities,
the departure time (hour, day, month, year), the number of unoccupied seats in each class (economic,
business, first), the revenue of each class.

A flight code (a combination of the ICAO airline designator with the flight number) identifies a flight
of an airline company from a departure airport to a destination airport (e.g. AP2701 is an Alitalia flight
from Malpensa to Fiumicino, available on certain days a week).

A flight is identified by the flight code and the departure time.
For each city the information of interest is the city’s name, the country and the continent.
For each company the information of interest is the name and the type (private or national).

Give a conceptual and logical data mart designs assuming that the following examples of business ques-
tions have been collected during the user interviews:

1. Number of unoccupied seats in a given year, by flight code, by company name (or type), by class, by
departure time (hour, day, month, year)

2. Number of unoccupied seats in a given class and year, by flight code, by company name, by class, by
departure (destination) city (country, continent)

3. Number of unoccupied seats and income of the Alitalia company, by year, by month, by destination
country.

A.3. Airline Flights 188

A.3 Airline Flights

An airline uses the database shown in Figure A.2 to store the following traffic information on passengers
from its flights.

Flights

FlightNumber �K�
DepartureDate �K�
DepartureTime
ArrivalDate
ArrivalTime

Tickets
Number �K�
Price
Class
DatePurchased

Aircraft
Type �K�
Capacity
ManagementCost
HourlyCost

Passenger

SSN �K�
BirthYear
Name
State

Airport

Name �K�
Size
City
State
Continent

UsedFor

To

From

On

Of

Figure A.2: The conceptual design of a database for airline flights

For each flight the information of interest is the flight code, the date and time of departure, the date and
time of arrival, the departure and destination airport, and the aircraft used. The flight code identifies a
possible flight of an airline from a departure airport to a destination airport (e.g. AP2701 is an Alitalia
flight from Malpensa to Fiumicino, available on certain days a week). A specific flight is identified by a
flight code and the departure date.

A flight is used by a set of passengers who bought a ticket. For each ticket the information of interest
is the number, which is unique, the price, the class and the date of purchase. For each passenger the
information of interest is the SSN, which is unique, the name and country.

A flight is made with an aircraft for which the information of interest is the type, which is unique,
the capacity, the monthly management cost (management cost for brevity) and the hourly operating cost
(fuel and crew).

For each airport the information of interest is the name, which is unique, the country, the continent,
and the size, with values “small”, “medium”, “large”.

Give a conceptual and logical data mart designs and the SQL queries for the following business ques-
tions collected during the user interviews:

1. Number of first-class passengers in a given month and year, by country and by age range of passen-
gers.

2. Number of passengers from Europe to the U.S. in a given month and year, and the total revenue, by
country and by age range of passengers.

3. Number of flights, by departure city, by destination city.
4. Average number of airline passengers, by month, by aircraft type, by country of destination.
5. Average number of airline passengers, by class, by holiday date.
6. Number of passengers, by year, by size of the destination airport.
7. Number of flights to airports in Germany from the October to December quarter of a given year, and

total management cost of the aircraft, by aircraft type.
8. Average profit of all flights, by country of departure, by destination country. The profit of a flight is

the total passenger price minus the total flight cost.
9. Total revenue in a given year of flights by month, by destination country. The total revenue by month,

total revenue by destination country, and the total revenue are also of interest.

A.4. Inventory 189

A.4 Inventory

A company has a set of warehouses in different cities containing some of the products for sale. Proper in-
ventory management is very important for a company and requires reconciling two conflicting demands:
keeping up their level to meet customer demands, and minimizing their level to reduce the capital invest-
ment and space required for storage.

The quantity of a product that is added to the warehouse is called QtyAcquired (QtyA), that which is
removed from the warehouse and shipped to customers is called QtyShipped (QtyS) and that present on a
given day is called QtyOnHand (QtyOH). For example:

Date Description QtyA QtyS QtyOH Days QtyOH Average
× monthly

Days QtyOH

01/01/2008 Initial QtyOnHand 100 14 1 400
15/01/2008 QtyReceived 120 220 6 1 320
21/01/2008 QtyShipped 80 140 4 560
25/01/2008 QtyShipped 60 80 7 560

Totals January 120 140 31 3 840 123.87

01/02/2008 80 6 480
07/02/2008 QtyShipped 20 60 8 480
15/02/2008 QtyReceived 150 210 10 2 100
25/02/2008 QtyShipped 50 160 4 640
29/02/2008 QtyShipped 100 60 1 60

Totals February 150 170 29 3 760 129.66

Among the possible models for the analysis of inventory products, and their handling, the model for
periodic snapshots is considered, simplified as follows: at the end of each month, for each deposit, the
following quantities are considered: (a) the monthly average QtyOnHand of each product, (b) the total
quantity of each product acquired in the month, and (c) the total quantity of each product shipped during
the month. The monthly average QtyOnHand is calculated as the monthly arithmetic average of the various
values of existing stocks for one month, weighted by their durations:∑n

i=1 qi × di
T

where qi is the value of the quantity on hand for di days and T is the number of days of the month.
For the sake of simplicity, we will use the terms QtyOnHand, QtyAcquired and QtyShipped instead of

Monthly average QtyOnHand, Monthly QtyAcquired and Monthly QtyShipped.
The company is interested in analyzing the QtyOnHand on a volume basis, and not on a financial basis,

by considering the following metrics in a given time period Tm measured in months:

– Inventory Turns (Inventory Turnover Ratio or Turns) is the top inventory metric used by any business.
This metric measures how fast a product moves in and out of the warehouse, and is calculated with
the following ratio:

Total QtyShipped

Average QtyOnHand

A high value of the Inventory Turns means that products are more frequently sold, and so their sale
allow the purchase of new quantities on hand.

A.4. Inventory 190

– Days in Inventory of a product (Days Sales in Inventory, Average Turnover Period or Days Inventory
Outstanding) measures the average time (in days) of the product in stock, and is calculated with the
following ratio:

Number of days

Inventory Turns

A low value of the Days in Inventory means that the recovery of capital invested in stocks is more
rapid.1

The following are some examples of business questions collected during the user interviews. For each
report there are others similar with QtyAcquired and QtyShipped, by city or region of warehouses, by
product category, by quarter or year.

Report 1. Total of Quantity on Hand (QtyOnHand) in January 2010, by product (SKU and Product Name),
by region. The subtotal, by all regions, is also of interest.

Quantity on Hand
January 2010

SKU Product Region Total of
Product Name QtyOnHand

1 P1 North 200
South 150
East 50
West 100
All . . .

2 P2 North 400
.

Report 2. Total of Quantity on Hand in the first quarter of 2010, by product category, by month name.

Product Category Quantity on Hand
First Quarter 2010

Product Month Total of
Category QtyOnHand

C1 January 900
February 300
March 500

C2 January 400
.

Report 3. Values of the Inventory Turns and Days in Inventory in the year 2010, by product category, by
quarter name.

1. For simplicity, we assume that a month is 30 days, a quarter is 90 days and one year is 365 days.

A.4. Inventory 191

Inventory Turns and Days in Inventory
Year 2010

Product Quarter Inventory Days in
Category Turns Inventory

C1 Q1
Q2
Q3
Q4

C2 Q1
.

Give a conceptual and logical data mart designs. For each measure, specify if it is additive, semi-additive
or non-additive. Give the SQL queries to produce the data of the reports.

A.5. Hotels 192

A.5 Hotels

The managers of an international hotel chain are interested in analyzing the degree of use of different
types of hotel rooms to determine how to price them.

Every day the rooms may be occupied, vacant or unavailable for maintenance reasons. There are
different types of rooms on the basis of the following properties: the type (standard, suite, deluxe), the
number of beds, the maximum number of occupants, and optional features, such as Minibar, satellite TV,
Internet, whirlpool bath, kitchenette, suite.

For each hotel the information of interest is the name, the location and the category (5 star, 4 star, . . . ,
1 star).

The managers are interested in analyzing the daily capacity utilization (occupancy rate) of each room
type using the following metrics:

– The room occupancy rate, defined as the ratio of the number of rooms occupied to the total number
of rooms (occupied, free and unavailable).

– The average room revenue, defined as the ratio of the total revenue for rooms occupied to the number
of rooms occupied.

– The revenue per available room, defined as the ratio of the total revenue for rooms occupied to the
number of rooms avaliable, equivalent to the average room revenue × room occupancy rate.

The following are some examples of business questions collected during the user interviews, of interest
also by category, region and country of the hotel, and by month, year and day of a holiday date.
1. The room occupancy rate of hotels of a given city and day, by hotel.

Occupancy Rate
Hotel Best, Florence

July 17, 2010

Hotel Occupancy Rate

Best 1 47%
Best 2 53%
Best 3 19%

2. The room occupancy rate of hotels of a given region and day, by room type.

Occupancy Rate
Hotel Best, Tuscany

July 17, 2010

Room Type Occupancy Rate

Standard 47%
Suite 53%
Deluxe 61%

3. The room occupancy rate at a given month and year, by hotel of a given city.

Occupancy Rate
Hotel Best, Florence

July 2010

Hotel Occupancy Rate

Best 1 74%
Best 2 79%
Best 3 60%

A.5. Hotels 193

4. The room occupancy rate and average room revenue of hotels in a given city, at a given month and
year, by hotel.

Occupancy Rate and Average Room Revenue
Hotel Best, Milan

July 2010

Hotel Occupancy Rate Average Room Revenue

Best 1 74% 145
Best 2 79% 60
Best 3 60% 75

5. The monthly revenue and the cumulative revenue of 4-star hotels in a given year, by country and by
month.

6. In a given year, the total revenue, and the cumulative revenue, of the rooms with the maximum number
of occupants and whirlpool bath, by hotel.

Give a conceptual and logical data mart designs to analyze the room type utilization. For each measure,
specify if it is additive, semi-additive or non-additive. Give the SQL queries to produce the data of the
reports.

A.6. Mortgage Applications 194

A.6 Mortgage Applications

A mortgage application process has a duration depending on the complexity of the mortgage, current
market conditions, and whether the applicant has to provide additional information.

Each bank has its own processes and, for simplicity, we assume that:

– The process takes place in four phases, a number between 1 and 4 (1. Submitting, 2. Reviewing,
3. Underwriting, 4. Closing).

– The applications are only those under evaluation (current phase number less than 4) or approved
(phase number equal to 4) in the current year, and are identified by a numerical code.

– The applications sent back to a previous phase, because of an error detected during processing, are
not considered.

– Each phase of the process has a start date, represented by the current day number, and an end date,
which is the start day number of the next phase. The Closing phase has only the start day number,
used to know the duration in days of the Underwriting phase.

Give a conceptual and logical data mart designs and the SQL queries for the following sample list of
business questions about processing volumes (1–3) and process efficiency (4–6). The examples of data
analysis results refer to the following sample data:

Mortgage Applications
Current Year

Application Day Start Phase Amount
Code Phase

1 100 1 100
1 105 2 100
1 130 3 100
1 150 4 100
2 110 1 200
2 120 2 200
2 150 3 200
2 170 4 200
3 120 1 300
3 140 2 300
3 170 3 300
4 120 1 400
5 115 1 500
5 135 2 500

1. Number of applications, by phase.

Phase No

1 5
2 4
3 3
4 2

2. Number of closed applications and total amount of applications.

No TotalAmount

2 300

A.6. Mortgage Applications 195

3. Number of applications not yet closed and total amount of applications.

No TotalAmount

3 1200

4. Number of applications and average processing time, by phase completed.

Phase No AvgProcTime

1 4 14
2 3 28
3 2 20

5. Total processing time of closed applications, by application.

ApplicationID ProcTime

1 50
2 60

6. Number of closed applications and average processing time.

No AvgProcTime

2 55

A.6. Mortgage Applications 196

Appendix B

CASE STUDIES: SOLUTIONS

It is likely that the solutions shown here will turn out to be not perfect. If you disagree with an answer,
please feel free to mail us.

B.1 Hospital

Requirements specification

Each business question is analyzed to identify the dimensions and the measures used, and the aggrega-
tions to compute (metrics):

Hospitalization
Requirements analysis Dimensions Measures Metrics

Total billed amount for hospital-
izations, by diagnosis code and
description, by month (year).

Diagnosis
(ICD, Description),
Date
(Month, Year)

Amount Total Amount

Total number of hospitaliza-
tions and billed amount, by
ward, by patient gender (age at
date of admission, city, region).

Ward,
Patient
(Gender, Age, City, Region)

Amount Total number
Total Amount

Total billed amount, average
length of stay and average
waiting time by diagnosis code
and description, by name (spe-
cialization) of the physician
who admitted the patient.

Diagnosis
(ICD code, Description),
Physician
(Name, Specialization)

Amount,
Duration,
WaitingTime

Total Amount
Average Dura-
tion
Average Wait-
ingTime

Total billed amount, and av-
erage waiting time for admis-
sion by patient age (region), by
treatment code (description).

Patient
(Age, Region),
Treatment
(Code, Description)

Amount,
Duration,
WaitingTime

Total Amount
Average Wait-
ingTime

From the requirements specification the following fact granularity arises:

Fact granularity
Description A fact is a hospitalization of a patient, assuming that they may re-

quire one treatment only

Preliminary dimensions Patient, Date, Ward, Diagnosis, Treatment, Physician

Preliminary measures Duration, WaitingTime, Amount

B.1. Hospital 198

The measure Amount is additive. The measures Duration and WaitingTime are non-additive because in
the analysis they are used only to average them.

Conceptual Design

The data mart conceptual design is shown in Figure B.1.

Hospitalizations

Duration
WaitingTime
Amount

Date
Month

Day

Year

Physician

Name
Specialization

Ward

Patient
Gender

Age

City

Region

Treatment—

Code
TreatmentDescription

Diagnosis

ICD
DiagnosisDescription

Figure B.1: The conceptual design of a data mart for the hospitalizations

Logical design

In the logical design, the facts are stored in the relation Hospitalizations, with the measures, the degenerate
dimension Ward and a foreign key for each dimension table, with its own surrogate primary key (Fig-
ure B.2). The surrogate primary key for the Date dimension is a day, an integer of the form YYYYMMDD.

Hospitalizations

PatientFK
DateFK
PhysicianFK
TreatmentFK
DiagnosisFK
Ward �DD�
Duration
WaitingTime
Amount

Diagnosis

DiagnosisPk
ICD
DiagnosisDescription

Patient
PatientPK
Age
Gender
City
Region

Treatment
TreatmentPK
TreatmentCode
TreatmentDescription

Date
DatePK
Month
Year

Physician

PhysicianPK
Name
Specialization

Figure B.2: The initial logical design of a data mart for the hospitalizations

This solution is correct, assuming that if a patient is hospitalized several times with different values of
age, its value in the dimension Patient is that of the last hospitalization. If we are interested in storing
the value of a patient age at each hospitalization, as desired by the requirements, with the admission of

B.1. Hospital 199

a patient with an age different from the one already present in Patient, a new record is created in the
table Patient with a different surrogate primary key (changes dealt with mode Type 2). To find out which
data refer to the same patient hospitalizations (for example, to count the different patients hospitalized),
InitialPatientKey is added as the attribute in the fact table, with the first surrogate key value assigned to a
patient (Figure B.3). This solution also allows us to deal with cases in which, at each new hospitalization,
the patient also changes the city and region of residence.

Hospitalizations

PatientFK
DateFK
PhysicianFK
TreatmentFK
DiagnosisFK
Ward �DD�
Duration
WaitingTime
Amount
InitialPatientKey�DD�

Diagnosis

DiagnosisPk
ICD
DiagnosisDescription

Patient
PatientPK
Age
Gender
City
Region

Treatment
TreatmentPK
TreatmentCode
TreatmentDescription

Date
DatePK
Month
Year

Physician

PhysicianPK
Name
Specialization

Figure B.3: The final logical design of a data mart for the hospitalizations

B.1. Hospital 200

B.2. Airline Companies 201

B.2 Airline Companies

Requirements specification

Each business requirement analysis is analyzed to identify the dimensions and the measures used, and
the aggregations to compute (metrics):

Airline companies
Requirements analysis Dimensions Measure Metrics

Number of unoccupied seats
in a given year, by flight code,
by company name (or type),
by class, by departure time
(time, day, month, year)

FlightCode, Class,
Company(Name, Type),
DepartureTime
(Time, Day, Month, Year)

UnoccupiedSeats Total
UnoccupiedSeats

Number of unoccupied seats
in a given class and year,
by flight code, by company
name, by class, by depar-
ture (destination) city (coun-
try, continent).

FlightCode, Class,
Company(Name),
DepartureCity
(Country, Continent),
DestinationCity
(Country, Continent)

UnoccupiedSeats Total
UnoccupiedSeats

Number of unoccupied seats
and revenue of the Alitalia
company, by year, by month,
by destination country.

Company(Name),
DepartureTime
(Month, Year),
DepartureCity(Country)

UnoccupiedSeats
Revenue

Total
UnoccupiedSeats,
Revenue

From the requirements specification the following fact granularity arises:

Fact granularity
Description A fact is the information on the number of unoccupied seats on a

flight of a class of a company

Preliminary dimensions Class, FlightCode, Company, Departure time, Departure city, Des-
tination city

Preliminary measures UnoccupiedSeats, Revenue

The measures are additive.

Conceptual Design

The data mart conceptual design is shown in Figure B.4.

FlightClassSeats

UnoccupiedSeats
Revenue

Company CompanyName

Type

Departure
Time

Time

Day

Month Year

Class FlightCode

City

Departure
City

Destination
City

Country
CityName Continent

Figure B.4: The conceptual design of a data mart for the airline companies

B.2. Airline Companies 202

Logical design

In the logical design, the facts are stored in the relation FlightClassSeats, with the measures, the degenerate
dimensions Class, FlightCode and a foreign key for each dimension table, with its own surrogate primary
key (Figure B.5).

FlightClassSeats

DepartureTimeFK
CompanyFK
DepartureCityFK
DestinationCityFK
UnoccupiedSeats
Revenue
Class �DD�
FlightCode �DD�

City

CityPK
CityName
Country
Continent

DepartureTime

DepartureTimePK
Time
Day
Month
Year

Company

CompanyPK
CompanyName
Type

Figure B.5: The logical design of a data mart for the airline companies

B.3. Airline Flights 203

B.3 Airline Flights
Requirements specification
Each business requirement analysis is analyzed to identify the dimensions and the measures used, and
the aggregations to compute (metrics):

Flight Process
Requirements analysis Dimensions Measures Metrics

Number of first-class passen-
gers in a given month and year,
by country, by age range of
passengers.

Passenger
(Nationality, AgeRange),
Class,
DepartureDate(Month, Year)

Number of
passengers

Number of passengers from
Europe to the U.S. in a given
month and year, and the to-
tal revenue, by country, by age
range of passengers.

Passenger
(Nationality, AgeBand),
DepartureDate(Month, Year),
DepartureAirport(Continent),
DestinationAirport(Country)

Price Number of
passengers,
Total price

Number of flights by departure
city, by destination city.

DepartureAirport(City),
DestinationAirport(City)

Number of
flights

Average number of airline pas-
sengers by month, by aircraft
type, by destination country.

DepartureDate(Month),
Aircraft(Type),
DestinationAirport(Country)

Average
number of
passengers

Average number of airline pas-
sengers by class, by holiday
date.

Class,
DepartureDate(HolidayFlag)

Average
number of
passengers

Number of passengers per
year, by size of the destination
airport.

DestinationAirport(Size),
DepartureDate(Year)

Number of
passengers

Number of flights to airports in
Germany from the October to
December quarter of a given
year, and total management
cost of the aircraft, by aircraft
type.

DepartureDate(Month, Year),
DestinationAirport(Country),
Aircraft(Type, ManagementCost)

Number of
flights,
Total man-
agement
cost

Average profit of all flights, by
country of departure, by des-
tination country. The profit of
a flight is the total passenger
price minus the total flight cost.

DepartureAirport(Country),
DestinationAirport(Country),
Flight(Duration),
Aircraft(ManagementCost, Hourly-
OperatingCost)

Price Average
profit

Total revenue in a given year
of flights, by month, by destina-
tion country. The total revenue
by month, total revenue by des-
tination country, and the total
revenue are also of interest.

DestinationAirport(Country),
DepartureDate(Month, Year)

Price Total Price

From the requirements specification the following fact granularity arises:

Fact granularity
Description A fact is the information on the ticket of a passenger flight

Preliminary dimensions Passenger, Flight, Class, Aircraft, Departure Airport, Destination
Airport

Preliminary measures Price

B.3. Airline Flights 204

The measure Price is additive.

Conceptual Design

The data mart conceptual design is shown in Figure B.6:

Tickets

Price
Aircraft

HourlyCost

Type

ManagementCost

Departure
Date

HolydayFlag

WeekDayName

MonthName

Day

Month Year
Flight

Flight
Number

Duration
Class

Passenger

Age
Band

Country

Airport

From To

CitySize Continent
Country

Figure B.6: The conceptual design of a data mart for the airline flights

Logical design

In the logical design, the facts are stored in the relation Tickets, with the measures, the degenerate dimen-
sion Class and a foreign key for each dimension table, with its own surrogate primary key (Figure B.7).
The surrogate primary key for the DepartureDate dimension is a day, an integer of the form YYYYMMDD.

To simplify the SQL analysis, the degenerate dimension FlightID has been added to the fact table to
identify the flight of a ticket, with a value the chaining together of the FlightFK and DepartureDateFK
values. If FlightID is not used, in the SQL analysis it will be substituted by the expression:

(CAST (FlightFK AS varchar) + CAST (DepartureDateFK AS varchar))

The table Passenger has as many elements as are the different combinations of Nationality and AgeBand
values.

Tickets
AircraftFK
PassengerFK
DepartureDateFK
DepartureAirportFK
DestinationAirportFK
FlightFK
Price
Class �DD�
FlightID �DD�

Airport

AirportPK
City
Country
Continent
State
Size

DepartureDate

DepartureDatePK
WeekDayName
MonthName
HolydayFlag
Month
Year

Passenger

PassengerPK
Country
AgeBand

Flight

FlightPK
FlightNumber
Duration

Aircraft
AircraftPK
Type �UK�
ManagementCost
HourlyCost

Figure B.7: The logical design of a data mart for the airline flights

B.3. Airline Flights 205

Data Analysis

Let us assume that and a month is represented as the integer YYYYMM, and a holiday date has the Holi-
dayFlag = true.

1. Number of first-class passengers in a given month and year, by country, by age range of passengers.

SELECT Country, AgeBand, COUNT(∗) AS NoOfPassengers
FROM Tickets, DepartureDate, Passenger
WHERE PassengerFK = PassengerPK AND DepartureDateFK = DepartureDatePK

AND Month = 200812 AND Class = 1
GROUP BY Country, AgeBand;

2. Number of passengers from Europe to the U.S. in a given month and year, and the total revenue, by
country, by age range of passengers.

SELECT Passenger.Country, AgeBand
, COUNT(∗) AS NoOfPassengers, SUM(Price) AS Revenue

FROM Tickets, Airport FRM, Airport TO, DepartureDate, Passenger
WHERE DepartureAirportFK = FRM.AirportPK

AND DestinationAirportFK = TO.AirportPK
AND PassengerFK = PassengerPK AND DepartureDateFK = DepartureDatePK
AND Month = 200812 AND FRM.Continent = ’Europa’ AND TO.Country = ’USA’

GROUP BY Passenger.Country, AgeBand;

3. Number of flights, by departure city, by destination city.

SELECT FRM.City AS DepartureCity, TO.City AS DestinationCity
, COUNT(DISTINCT FlightID) AS NoOfFlights

FROM Tickets, Airport FRM, Airport TO
WHERE DepartureAirportFK = FRM.AirportPK

AND DestinationAirportFK = TO.AirportPK
GROUP BY FRM.City, TO.City;

4. Average number of airline passengers by month, by aircraft type, by destination country.

SELECT MonthName , Type AS AircraftType, Country AS DestinationCountry
, COUNT(∗) / COUNT(DISTINCT FlightID) AS AvgNoOfPassengers

FROM Tickets, Airport, DepartureDate, Aircraft
WHERE DestinationAirportFK = AirportPK

AND DepartureDateFK = DepartureDatePK AND AircraftFK = AircraftPK
GROUP BY MonthName, Type, Country;

5. Average number of airline passengers, by class, by holiday date.

SELECT Class, DepartureDateFK AS HolydayDate
, COUNT(∗) / COUNT(DISTINCT FlightID) AS AvgNoOfPassengers

FROM Tickets, DepartureDate
WHERE DepartureDateFK = DepartureDatePK AND HolydayFlag
GROUP BY Class, DepartureDateFK;

B.3. Airline Flights 206

6. Number of passengers, by year, by size of the destination airport.

SELECT Year, Size AS SizeDestinationAirport
, COUNT(∗) AS NoOfPassengers

FROM Tickets, Airport, DepartureDate
WHERE DestinationAirportFK = AirportPK

AND DepartureDateFK = DepartureDatePK
GROUP BY Year, Size;

7. Number of flights to airports in Germany from the October to December quarter of a given year, and
total management cost of the aircraft, by aircraft type.

SELECT Type
, COUNT(DISTINCT FlightID) AS NoOfFlights
, COUNT(DISTINCT Month)∗ManagementCost AS TotalManagementCost

FROM Tickets, Airport, DepartureDate, Aircraft
WHERE DestinationAirportFK = AirportPK

AND DepartureDateFK = DepartureDatePK AND AircraftFK = AircraftPK
AND Country = ’Germania’ AND Month IN (200710 , 200711 , 200712)

GROUP BY Type, ManagementCost;

8. Average profit of all flights by country of departure and by destination country. The profit of a flight
is the total passenger price minus the total flight cost.

WITH Price-FlightHourlyCost-FlighManagementCost AS
(SELECT Type

, FRM.Country AS DepartureCountry
, TO.Country AS DestinationCountry
, SUM(Price) AS TotalPrice
, HourlyCost∗Duration∗COUNT(DISTINCT FlightID)

AS FlightHourlyCost
, ManagementCost∗COUNT(DISTINCT Month)

AS FlighManagementCost
FROM Tickets, Airport FRM, Airport TO, Flight, Aircraft, DepartureDate
WHERE DepartureAirportFK = FRM.AirportPK

AND DestinationAirportFK = TO.AirportPK
AND FlightFK = FlightPK
AND AircraftFK = AircraftPK
AND DepartureDateFK = DepartureDatePK

GROUP BY FlightFK, Type, FRM.Country, TO.Country, HourlyCost,
ManagementCost, Duration

)

SELECT DepartureCountry
, DestinationCountry
, (SUM(TotalPrice) −

SUM(FlightHourlyCost) − SUM(FlighManagementCost))/COUNT(∗)
AS FlightsAvgProfit

FROM Price-FlightHourlyCost-FlighManagementCost
GROUP BY DepartureCountry, DestinationCountry;

B.3. Airline Flights 207

9. Total revenue in a given year of flights by month and by destination country. The total revenue by
month, total revenue by destination country, and the total revenue are also of interest.

SELECT MonthName, Country AS DestinationCountry
, SUM(Price) AS TotalRevenue,

FROM Tickets, Airport, DepartureDate
WHERE DestinationAirportFK = AirportPK AND DepartureDateFK = DepartureDatePK

AND Year = 2008
GROUP BY CUBE (MonthName, Country);

B.4. Inventory 208

B.4 Inventory
Requirements specification
From the examples of business questions the following fact granularity arises:

Fact granularity
Description A fact is the information on the monthly values of the quantities of

products on hand, acquired and shipped

Preliminary dimensions Product (SKUProduct, Name, Category), Date (Month, Quarter,
Year) Warehouse (Name, City, Region, Area)

Preliminary measures QtyOnHand, QtyAcquired, QtyShipped

The measures QtyAcquired and QtyShipped are semi-additive with respect to the dimension Product. In
fact, for analysis of inventories, it makes sense to aggregate quantities of a specific product, e.g., in order
to calculate the Inventory turns of a specific product. Aggregation of different products makes sense
instead when considering measures of weight, space, or monetary value.

The measure QtyOnHand is semi-additive with respect to both the dimension Date and the dimension
Product.

The metrics Inventory Turns and Days in Inventory, defined with a ratio, are non-additive and cannot
be considered as measures.

Conceptual Design
The data mart conceptual design is shown in Figure B.8.

Inventory

QtyOnHand
QtyAcquired
QtyShipped

Date

Month

Quarter

Year

MonthName

QuarterName

Warehouse

City

Region

Area

Name

Product

SKUProductProductName
ProductCategory

Figure B.8: The conceptual design of a data mart for the Inventory

Logical design
In the logical design, the facts are stored in the relation Inventory, with the measures, and a foreign key
for each dimension table, with its own surrogate primary key (Figure B.9). The surrogate primary key
for the Date dimension is a month, an integer of the form YYYYMM.

Inventory

ProductFK
DateFK
WarehouseFK
QtyOnHand
QtyAcquired
QtyShipped

Product
ProductPK
SKUProduct
ProductName
ProductCategory

Date
DatePK
MonthName
QuarterName
Quarter
Year

Warehouse
WarehousePK
Name
City
Region
Area

Figure B.9: The logical design of a data mart for the Inventory

B.4. Inventory 209

Data Analysis

1. Report 1. Total of QtyOnHand in January 2010, by product (SKU and Product Name), by region. The
subtotal by all regions is also of interest.

SELECT SKUProduct, ProductName, Region
, SUM(QtyOnHand) AS TotalQtyOnHand

FROM Inventory, Product, Warehouse
WHERE ProductFK = ProductPK AND WarehouseFK = WarehousePK

AND DateFK = 201001
GROUP BY SKUProduct, ProductName, ROLLUP(Region);

2. Report 2. Total of QtyOnHand in the first quarter 2010, by product category, by month name.

A value of the attribute Quarter is an integer of the form YYYYQ.

This report has no subtotals, as the previous one, because a subtotal for each category would require
totalling the quantities over time, which is meaningless. Adding together the month-end quantities
for January, February, and March produces a number that has no meaning. It does not represent the
quantity on hand at the end of the period; the March value alone tells us that.

When summing a semi-additive measure such as QtyOnHand, the dimension across which it is not
additive (time) must be used to constrain the query, as in Report 1, or the semi-additive measure
must be grouped by the dimension in question, as in this report, without a further total or subtotal.

As “subtotals” we can compute the average of the values, but attention is required in correctly com-
puting the average of a set of values as the sum of the values divided by the number of values. In
this example the standard SQL average function will not perform this calculation correctly because it
assumes as cardinality of a set of values the number of elements of a group of records. For example,
if we have two products of the same category available in two warehouses every month of a quarter,

QtyOnHand of product category C1
First Quarter 2010

Product DateFK WarehouseFK ProductFK Month QtyOnHand
Category Name

C1 201001 1 1 January 500
C1 201001 2 2 January 400
C1 201002 1 1 February 100
C1 201002 2 2 February 100
C1 201003 1 1 March 200
C1 201003 2 2 March 300

grouping the data on ProductCategory, C1 will appear in 6 records and so

AVG(QtyOnHand) =
SUM(QtyOnHand)

6

while the correct value is

AVG(QtyOnHand) =
SUM(QtyOnHand)

3 (months of the quarter)

The problem is avoided by computing the average without using the SQL average function, as follows.

B.4. Inventory 210

SELECT ProductCategory, MonthName AS Month
, SUM(QtyOnHand) /COUNT(DISTINCT DateFK) AS TotalQtyOnHand

FROM Inventory, Product, Date
WHERE ProductFK = ProductPK AND DateFK = DatePK AND Quarter = 20101
GROUP BY ProductCategory, ROLLUP(MonthName);

3. Report 3. Values of the Inventory Turns and Days in Inventory in the year 2010, by product category,
by quarter name.

The non-additive metrics Inventory Turns and Days in Inventory, must be computed by a “ratio of
sum and not by a sum of ratio”.

SELECT ProductCategory, QuarterName AS Quarter
, SUM(QtyShipped) / (SUM(QtyOnHand) / COUNT(DISTINCT DateFK))

AS InventoryTurns
, 90 ∗ (SUM(QtyOnHand) / COUNT(DISTINCT DateFK))

/ SUM(QtyShipped)
AS DaysInInventory

FROM Inventory, Product, Date
WHERE ProductFK = ProductPK AND DateFK = DatePK AND Year = 2010
GROUP BY ProductCategory, QuarterName;

B.5. Hotels 211

B.5 Hotels

Requirements specification
From the requirements the following fact granularity arises :

Fact granularity
Description A fact is the information on the daily room type utilization and rev-

enue of each hotel

Preliminary dimensions Room type, Date, Hotel

Preliminary measures NOccupiedRooms, NVacantRooms, NUnavailableRooms, NOccu-
pants, Revenue

The dimension Room type has as many attributes as the properties of a room, with the attributes for the
optional features available with values ’Y’ or ’N’.

The measures NOccupants and Reveue are additive, while NoOccupiedRooms, NVacantRooms and
NUnavailableRooms are semi-additive with respect to Date.

The metrics Occupancy Rate, Average Available Room Revenue and Average Room Revenue are non-
additive and must not be defined as measures.

Conceptual Design
The conceptual design of a data mart is shown in Figure B.10.

RoomTypeUtilization

NoOccupiedRooms
NoVacantRooms
NoUnavailableRooms
NoOccupants
Revenue

Date
Year

Month

Day

HolydayFlag

DayWeekName

Hotel

City

Region

Country

Name

Category

RoomType

MiniBar
. . .
WhirlpoolBath

Type

NumberOfBeds

MaximumOccupants

Figure B.10: The conceptual design of a data mart for the hotel room type utilization

Logical design
In the logical design, the facts are stored in the relation RoomTypeUtilization, with the measures, and a
foreign key for each dimension table, with its own surrogate primary key (Figure B.11). The surrogate
primary key for the Date dimension is a day, an integer of the form YYYYMMDD.

RoomTypeUtilization

RoomTypeFK
DateFK
HotelFK
NoOccupiedRooms
NoVacantRooms
NoUnavailableRooms
NoOccupants
Revenue

RoomType

RoomTypePK
Type
NumberOfBeds
MaximumOccupants
MiniBar
. . .
WhirlpoolBath

Hotel
HotelPK
Name
Category
City
Region
Country

Date
DatePK
DayWeekName
HolydayFlag
Month
Year

Figure B.11: The logical design of a data mart for the hotel room type utilization

B.5. Hotels 212

Data Analysis

1. The room occupancy rate of hotels of a given city and day, by hotel.

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate
FROM RoomTypeUtilization F, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = 20100717

AND H.City = ’Florence’
GROUP BY F.HotelFK, H.Name;

2. The room occupancy rate of hotels of a given region and day, by room type.

SELECT R.Type
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate
FROM RoomTypeUtilization F, RoomType R, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.RoomTypeFK = R.RoomTypePK

AND H.Region = ’Tuscany’ AND F.DateFK = 20100717
GROUP BY R.Type;

3. The room occupancy rate at a given month and year, by hotel in a given city.

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate,
FROM RoomTypeUtilization F, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK

AND D.Month = 201007 AND H.City = ’Florence’
GROUP BY F.HotelFK, H.Name;

4. The room occupancy rate and average room revenue of hotels in a given city, at a given month and
year, by hotel.

SELECT H.Name
, SUM(F.NOccupiedRooms) / (SUM(F.NOccupiedRooms) +

SUM(F.NVacantRooms) +
SUM(F.NUnavailableRooms))

AS OccupancyRate
, SUM(F.Revenue)/SUM(F.NOccupiedRooms) AS AvgRevenueByRoom

FROM RoomTypeUtilization F, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK

AND D.Month = 201007 AND H.City= ’Milan’
GROUP BY F.HotelFK, H.Name;

B.5. Hotels 213

5. The monthly revenue and the cumulative revenue of 4-star hotels in a given year, by country and by
month.

SELECT H.Country, D.Month
, SUM(F.Revenue) AS MonthlyRevenue
, SUM(SUM(F.Revenue)) OVER

(PARTITION BY H.Country ORDER BY D.Month
ROWS UNBOUND PRECEDING)

AS CumulativeRevenue
FROM RoomTypeUtilization F, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK

AND H.Category = ’4-star’ AND D.Year = 2010
GROUP BY H.Country, D.Month;

6. In a given year, the total revenue, and the cumulative revenue, of the rooms with the maximum number
of occupants and whirlpool bath, by hotel.

SELECT F.HotelFK, H.Name, SUM(F.Revenue) AS TotalRevenue
, SUM(SUM(F.Revenue)) OVER

(ROWS UNBOUND PRECEDING)
AS CumulativeRevenue

FROM RoomTypeUtilization F, RoomType R, Date D, Hotel H
WHERE F.HotelFK = H.HotelPK AND F.DateFK = D.DatePK

AND F.RoomTypeFK = R.RoomTypePK
AND D.Year = 2010 AND R.WhirpoolBath = ’Y’
AND F.NOccupants = R.MaximumOccupants

GROUP BY F.HotelFK, H.Name;

B.6. Mortgage Applications 214

B.6 Mortgage Applications

First Solution: A Transaction Fact

Let us assume that a fact is a phase of the mortgage application and the data mart conceptual and logical
designs are those in Figure B.12. When a mortgage application is submitted, a row is inserted into the fact
table, with the application code, the phase number, and the start day number. Each time the application
enters the next phase, an additional row will be added for the application, with the start day number of
the new phase, and so on.

MortgageApplications

Amount

ApplicationID

DayStartPhase

Phase

(a) Conceptual design

MortgageApplications

ApplicationID
DayStartPhase
Phase
Amount

(b) Logical design

Figure B.12: A transaction fact

The business questions about processing volumes are easy to write in SQL.

1. Number of applications, by phase.

SELECT Phase
, COUNT(∗) AS No

FROM MortgageApplications
GROUP BY Phase;

2. Number of closed applications and total amount of applications.

SELECT COUNT(∗) AS No
, SUM(Amount) AS TotalAmount

FROM MortgageApplications
WHERE Phase = 4;

3. Number of applications not yet closed and total amount of applications.

SELECT COUNT(∗) AS No
, SUM(Amount) AS TotalAmount

FROM MortgageApplications A
WHERE A.Phase = 1

AND NOT EXISTS (
SELECT ∗
FROM MortgageApplications B
WHERE A.ApplicationID = B.ApplicationID AND B.Phase = 4);

The business questions about process efficiency are neither easy to write in SQL nor likely to be
efficient on large fact tables, because it is necessary to correlate fact rows that represent the phase
changes. For example, to find the duration of an approved application requires computing the number
of days between its submission and its closing phase start days, and this information is stored in
separate rows.

B.6. Mortgage Applications 215

4. Number of applications and average processing time, by phase completed.

SELECT B.Phase AS Phase
, COUNT(∗) AS No
, AVG(A.DayStartPhase − B.DayStartPhase) AS AvgProcTime

FROM MortgageApplications A, MortgageApplications B
WHERE A.ApplicationID = B.ApplicationID AND B.Phase = A.Phase − 1
GROUP BY B.Phase;

5. Total processing time of closed applications, by application.

SELECT A.ApplicationID AS ApplicationID
, MAX(A.DayStartPhase) − MIN(A.DayStartPhase) AS ProcTime

FROM MortgageApplications A
WHERE EXISTS (

SELECT ∗
FROM MortgageApplications B
WHERE A.ApplicationID = B.ApplicationID AND B.Phase = 4)

GROUP BY A.ApplicationID;

6. Number of closed applications and average processing time.

WITH DurationClosedApplications AS (
SELECT A.ApplicationID AS ApplicationID

, MAX(A.DayStartPhase) − MIN(A.DayStartPhase) AS ProcTime
FROM MortgageApplications A
WHERE EXISTS (

SELECT ∗
FROM MortgageApplications B
WHERE A.ApplicationID = B.ApplicationID AND B.Phase = 4)

GROUP BYA.ApplicationID
)

SELECT COUNT(∗) AS No,
, AVG(ProcTime) AS AvgProcTime

FROM DurationClosedApplications;

Second Solution: A Transaction Fact with Duration of Phases

The business questions about process efficiency can be simplified in SQL by using two pieces of informa-
tion for each application phase: the day on which the phase begins and duration of the phase (the number
of days) (Figure B.13).

MortgageApplications

PhaseDuration
Amount

ApplicationID

DayStartPhase

Phase

(a) Conceptual design

MortgageApplications

ApplicationID
DayStartPhase
Phase
PhaseDuration
Amount

(b) Logical design

Figure B.13: A transaction fact with duration of phases

When a mortgage application is submitted, a row is inserted into the fact table, with the application code,
the phase number, the start day number, and the duration of the phase have the value 0. Each time the

B.6. Mortgage Applications 216

application enters a new phase, an additional row will be added for the application, with the start day
number, and the duration in the fact table row of the previous phase is updated with its value.

The duration of the Closing phase has the value 0.
The following table displays the rows of a simple Mortgage Applications transaction fact table with the

duration of phases.

Mortgage Applications
Current Year

Application Day Start Phase Phase Amount
Code Phase Duration

1 100 1 5 100
1 105 2 25 100
1 130 3 20 100
1 150 4 0 100
2 110 1 10 200
2 120 2 30 200
2 150 3 20 200
2 170 4 0 200
3 120 1 20 300
3 140 2 30 300
3 170 3 0 300
4 120 1 0 400
5 115 1 20 500
5 135 2 0 500

The SQL queries for the first three business questions are the same. Let us see those that change.
4. Number of applications and average processing time, by phase completed.

SELECT Phase, COUNT(∗) AS No, AVG(PhaseDuration) AS AvgProcTime
FROM MortgageApplications
WHERE PhaseDuration > 0
GROUP BY Phase;

5. Total processing time of closed applications, by application.

SELECT ApplicationID, SUM(A.DayStartPhase − B.DayStartPhase) AS ProcTime
FROM MortgageApplications
WHERE EXISTS (

SELECT ∗
FROM MortgageApplications B
WHERE A.ApplicationID = B.ApplicationID AND B.Phase = 4)

GROUP BY ApplicationID;

6. Number of closed applications and average processing time.

SELECT COUNT(DISTINCT A.ApplicationID) AS No
, SUM(A.PhaseDuration) / COUNT(DISTINCT A.ApplicationID)

AS AvgProcTime
FROM MortgageApplications A
WHERE EXISTS (

SELECT ∗
FROM MortgageApplications B
WHERE A.ApplicationID = B.ApplicationID AND B.Phase = 4);

Unfortunately, this approach does not eliminate the correlated subquery when looking at the time spent
across multiple phases. Let us see another solution to simplify the SQL queries.

B.6. Mortgage Applications 217

Third Solution: An Accumulating Snapshot Fact

Phase start day and phase duration do not simplify all the business questions about process efficiency
in SQL using a transaction fact table. A better solution is a different data mart design based on an
accumulating snapshot fact: there is one row for each application, independently of the number of phases,
and the fact table rows are updated when a phase begins or terminates (Figure B.14).

Constructed in this manner, the accumulating snapshot fact is a useful and powerful tool for studying
time spent at any phase or any combination of phases. Duration of phases can be studied in terms of
their minimums, maximums, or averages across any relevant dimensions, simply by aggregating the
appropriate measures as required.

MortgageApplications

DurationSubmitting
DurationReviewing
DurationUnderwriting
DurationProcessing
Amount

ApplicationID

DayStartSubmitting

DayStartReviewing

DayStartUnderwriting

(a) Conceptual design

MortgageApplications

ApplicationID
DayStartSubmitting
DayStartReviewing
DayStartUnderwriting
Phase
DurationSubmitting
DurationReviewing
DurationUnderwriting
DurationProcessing
Amount

(b) Logical design

Figure B.14: An accumulating snapshot fact

The following table displays the rows of a simple Mortgage Applications accumulating snapshot fact table.

Mortgage Applications
Current Year

Application Day Start Day Start Day Start Phase
ID Submitting Reviewing Underwriting

1 100 105 130 4
2 110 120 150 4
3 120 140 170 3
4 120 0 0 1
5 115 135 0 2

Mortgage Applications
Current Year

Duration Duration Duration Duration Amount
Submitting Reviewing Underwriting Processing

5 25 20 50 100
10 30 20 60 200
20 30 0 50 300
0 0 0 0 400
20 0 0 20 500

Let us assume that the following table exists about the phases of mortgage applications.

B.6. Mortgage Applications 218

Phases
PhaseNo Description

1 Submitting
2 Reviewing
3 Underwriting
4 Closing

Let us see how the SQL queries change and perform better on large fact tables.

1. Number of applications, by phase.

SELECT PhaseNo AS Phase, COUNT(∗) AS No
FROM MortgageApplications, Phases
WHERE Phase >= PhaseNo
GROUP BY PhaseNo ORDER BY PhaseNo;

2. Number of closed applications and total amount of applications.

SELECT COUNT(∗) AS No
, SUM(Amount) AS TotalAmount

FROM MortgageApplications
WHERE Phase = 4;

3. Number of applications not yet closed and total amount of applications.

SELECT COUNT(∗) AS No
, SUM(Amount) AS TotalAmount

FROM MortgageApplications
WHERE Phase < 4;

4. Number of applications and average processing time, by phase completed.

SELECT PhaseNo AS Phase, COUNT(∗) AS No
, AVG(CASE PhaseNo

WHEN 1 THEN DurationSubmitting
WHEN 2 THEN DurationReviewing
WHEN 3 THEN DurationUnderwriting END) AS AvgProcTime

FROM MortgageApplications, Phases
WHERE Phase > PhaseNo
GROUP BY PhaseNo ORDER BY PhaseNo;

5. Total processing time of closed applications, by application.

SELECT ApplicationID, DurationProcessing
FROM MortgageApplications
WHERE Phase = 4;

6. Number of closed applications and average processing time.

SELECT COUNT(∗) AS No
, AVG(DurationProcessing) AS AvgProcTime

FROM MortgageApplications
WHERE Phase = 4;

B.6. Mortgage Applications 219

Fourth Solution: A More General Accumulating Snapshot Fact

Let us assume that the bank is also interested in the following business questions:

– Number of mortgage applications, and total funding requested, by interest rate, by year, by quarter,
by month.

– Number of mortgages underwritten, the total amount underwritten, the average difference between the
amount requested by the application and the amount underwritten, by type rate, by year, by quarter,
by month.

– Number of mortgage applications denied, and the average duration of the review and processing
phase, by the applicant’s income range.

– Minimum, maximum and average duration of mortgage applications underwritten, by the employee
who reviewed and processed the application.

Figure B.15 shows the conceptual design of a possible data mart to support in addition the new business
questions.

MortgageApplications

DurationSubmitting
DurationReviewing
DurationUnderwriting
DurationProcessing

ApplicationAmount
UnderwrittenAmount

Application
ID

MortgageDuration

HouseLocation

Customer

Qualification

Profession

MonthlyIncomeBand

MonthlyPayments
ExistingObligations

Date

DateStart
Submitting

DateStart
Reviewing

DateStart
Underwriting

Day

Month

Quarter

Year

Phase InterestRate
MortgageUnderwritten

—

Employee

Processor Underwriter

OfficeName

Figure B.15: The final data mart Mortgage Applications conceptual design

B.6. Mortgage Applications 220

Appendix C

GLOSSARY

Aggregation
The result of an aggregate function (sum, count, average, minimum, maximum, etc.) applied to a bag
of values.

Business Intelligence
A set of methods and tools for interactive data analysis used primarily by business administrative
staff to understand and analyze business performance in order to obtain useful information to support
unstructured decision making.
The term intelligence is used with the meaning of investigating to find out something interesting, like
in Intelligence Service.
The business intelligence methods and tools are of the following types:

– Reports. Reporting is considered the basic level of decision support.
– Multidimensional data analysis. Data analysis is usually accomplished interactively with some

kind of data analysis tool.
– Exploratory data analysis. This data analysis technique is very different from reports and multi-

dimensional analysis: it uses what is called a discovery technique of useful data models with data
mining algorithms.

Computerized Information System
A subset of an information system that use a variety of technologies to process information.

Conformed Dimension
A dimension shared by several fact tables.

Constellation schema
The relational schema of a data warehouse with several fact tables that share dimensional tables.

Cube
A multidimensional cube model (data cube) represent facts with n dimensions by points (a cell) in an
n-dimensional space. The cells of the cube contain data measures and the edges of the cube represent
the data dimensions.
Although a cube implies only 3 dimensions in geometry, a data cube may represent any number of
dimensions.
Some vendors provide OLAP servers that implement the fact table as a data cube using a specialized
data structure. Such implementations are referred to as MOLAP (Multidimensional OLAP).

Cuboid
Let us assume that each dimension domain is extended with an additional value “∗”. This value has
the intuitive meaning “all”, and it represents summarization along the dimension in which it appears,
called cuboid. A cube can be extended with new “borders” made of cells containing the value of
aggregate functions.
The extended cube is a generalization of a cross-tabulation, which is 2-dimensional, to n dimensions.
To speed up data analysis, commercial data cube systems precompute all or some of the cuboids and
store them as materialized views of the data cube.

222

Data, Information, Knowledge
Data is the representation of certain facts that a computer records, stores and processes. Data, or a
condensed form of them, become information when are interpreted in a certain context. Information
becomes knowledge when it provides insight upon which the recipient, on the base of his experience,
competence, and attitude, can make informed and effective decisions and take proper actions.

Data Mart
A database that has the same characteristics of a data warehouse, but it is focused on a single mea-
surable business process to analyze, and so it has only one fact.

Data Mining
An exploratory data analysis technique to discovery useful data models with specialized algorithms.

Data Warehouse
A decision support database with historical, nonvolatile data, pulled together primarily from opera-
tional business systems, structured and tuned to facilitate analysis of the performance of key business
processes, worthy of improvement.
The first and still now the most widely cited definition of data warehouse was provided by William
Inmon in 1990: “A data warehouse is a subject-oriented, integrated, nonvolatile, and time-varying
collection of data in support of management’s decisions.”
A fundamental axiom of the data warehouse is that data is both read-only and non-volatile. As the
amount of data within the data warehouse grows, the value of the data increases, allowing a user to
perform longer-term analyses of the data.
Whereas the operational data is generally real-time or near real-time, data within the data warehouse
is historical, since the data warehouse is used primarily for reporting and analyzing relatively large
volumes of historical data in an effort to decide what to do in the future.

Data Warehousing
The process used to organize data in a data warehouse and then allow users to analyze them with
business intelligence tools.

Data Warehouse Management System (DWMS)
A specialized software for creating and managing large amount of nonvolatile data efficiently and
allowing it to be analyzed with OLAP queries. There are three broad directions that have been taken
to develop this specialized systems: Relational OLAP (ROLAP), Multidimensional OLAP (MOLAP),
Column-Oriented OLAP.

DSS, Decision Support System
A software system used to support decision-making processes within an organization. While an oper-
ational system is for performing the business, a decision support systems is for analyzing the business.

Dice
An operator to selects a subcube of a given cube with a selection on two or more dimensions. The
operator does not make aggregations on the data cube.

Dimensional Data Model
A data model that represents measurements of a process and the independent variables that may affect
that process. In a dimensional model, data are organized into multiple dimensions and each dimension
contains multiple levels of abstraction defined by concept hierarchies. This organization provides the
users with the flexibility to view data from different perspectives.

Dimensional Fact Model (DFM)
A conceptual dimensional data model.

Dimension
One of the perspectives that can be used to analyze the data in a data warehouse.

Dimensional Table
The table of a relational database which contains the data for one of the dimensions. The dimensional
attributes describe individual characteristics of a dimension.
The dimension table has a primary key (usually a surrogate one) which is used to connect it to the
fact table. The dimension tables in a star schema are intentionally de-normalized.

223

DOLAP (Desktop OLAP)
A system which manage on a personal computer small amount of data extracted from a multidimen-
sional OLAP server, a DW or an operational DBMS.

Drill-down or Roll-down
An operator to have an aggregated view of the data to a higher level of detail in two ways: by moving
down along a dimensional hierarchy level or by adding a dimension of analysis.

ERP (Enterprise Resource Planning)
The meaning of the acronym ERP does not explain the purpose of these systems, which is not the
enterprise resource planning, but the integration of business processes in a single software system that
can meet all the information requirements of the company using a centralized database .

ETL (Extract, Transform, Load)
A set of back-end data staging steps that are used to (1) obtain data from operational sources (i.e. the
extraction step), (2) cleanse and prepare data for import into the data warehouse (i.e. the transforma-
tion step), and (3) actually importing the transformed data into the data warehouse (i.e. the loading
step).

Fact
A collection of related data items, consisting of measures and context data. Each fact typically repre-
sent a business item, a business transaction, or an event that can be used in analyzing the business or
key business processes. The most useful data items are indeed numeric and often additive.

Fact Table
The table of a relational database which contains the individual facts being stored in the data ware-
house.
There are two types of fields in a fact table: a) The fields storing the foreign keys which connect each
particular fact to the appropriate value in each dimension; b) The fields storing the individual fact
measures, such as number, amount, or price.
The granularity of the fact table is one of the most significant design decisions in creating a data
warehouse. The facts should be as detailed as possible to allow for the data to be viewed from the
greatest number of perspectives.

Granularity
The level of detail of the facts stored in a data warehouse, and so the meaning of a single record in a
fact table.

Hierarchy
Dimensional attributes can be arranged into one or more logical structures to analyze data at various
levels of detail.
For example, the hierarchy among the attributes City and Region of the dimension Location, states
that each city belongs to one region and a region generally contains several cities. The multidimen-
sional analysis usually exploits the hierarchy among the dimensional attributes to perform aggrega-
tions of the measures at various levels of detail along the dimensions of the data warehouse. For
example, a typical hierarchy is the dimension of time to analyze the facts by year, by quarter, by
month or by day.

HOLAP (Hybrid On Line Analytical Processing)
A combined use of Relational OLAP (ROLAP) and Multidimensional OLAP (MOLAP).

Information System
A system whose purpose is to store, process, and communicate information.

Key Business Process
A business process that can be clearly defined, is measurable, and is worthy of improvement.

Measure
A numerical property of a fact useful for evaluating the performance of the processes to be analyzed.

Materialized View
The results of a query stored and automatically used to facilitate the execution of other more complex
queries.

224

Metadata
It is referred to as being the data about data, which defines all aspects of the data contained in a
data warehouse including where it originally comes from, its type, what transformations it has been
subjected to, where it has been used and what it means from a business perspective.

MOLAP (Multidimensional On Line Analytical Processing)
OLAP systems that store cuboids in a specialized data structures.

OLAP (On Line Analytical Processing)
A category of database software systems that primarily involves aggregating large amounts of data
from a data warehouse. The term was introduced to distinguish the activities of data analysis from
daily activities on business data organized in databases.

OLAP Client
A system that provides interactive tools for multi-dimensional analysis.

OLAP Server
A system that provides a vision of data to be analyzed as a cube.

OLTP (On Line Transaction Processing)
A category of database software systems that typically involves processing transactions in real time.

Operational Systems
A transaction processing systems to process operational data.

ROLAP (Relational On Line Analytical Processing)
An OLAP system that store data and materialized views in a relational DBMS.

Roll-up
The operator performs aggregation on a data cube, either climbing up a concept hierarchy for a
dimension or by dimension reduction.

Schema
The definition of the logical structure of a database or a data warehouse.

Slice
An operator to selects a cross section that cut across a cube with a selection on one dimension. The
result is a subcube, and so the operator does not make aggregations on a data cube.

Snowflake Schema
A variant of the star schema, where some dimension tables are normalized, thereby further splitting
the data into additional tables.

Star Schema
The relational schema of a data warehouse with (1) a large central table (fact table) containing the
bulk of the data without redundancy, and (2) a set of smaller attendant tables (dimension tables), one
for each dimension.

BIBLIOGRAPHY

Adamson, C. and Venerable, M. (1998). Data Warehouse Design Solutions. J. Wiley & Sons, New York.
20, 65

Agrawal, S., Chaudhuri, S., and Narasayya, V. (2000). Automated selection of materialized views and
indexes for SQL databases. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 496–505, Cairo, Egypt. 151

Albano, A., Rosa, L. D., Goglia, L., Goglia, R., Minei, V., and Dumitrescu, C. (2006). Another Ex-
ample of a Data Warehouse System Based on Transposed Files. In Proceedings of the International
Conference on Extending Database Technology, pages 1110–1114, Munich, Germany. 135

Artz, J. M. (2005). Data driven versus metric driven data warehouse design. In Wang, J., editor, Encyclo-
pedia of Data Warehousing and Mining, pages 223–227. IDEA Group Reference, Hershey, PA, USA.
10, 36

Ballard, C., Farrell, D. M., Gupta, A., Mazuela, C., and Vohnik, S. (2006).
Dimensional Modeling: In a Business Intelligence Environment. IBM,
http://www.redbooks.ibm.com/redbooks/pdfs/sg247138.pdf. 36

Baralis, E., Paraboschi, S., and Teniente, E. (1997). Materialized views selection in a multidimensional
database. In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages
156–165, Athens, Greece. 148

Batory, D. S. (1979). On searching transposed files. ACM Transactions on Database Systems, 4(4):531–
544. 133

Boncz, P. A. and Kersten, M. L. (1999). MIL Primitives for Querying a Fragmented World. The VLDB
Journal, 8(2):101–119. 133

Boncz, P. A., Zukowski, M., and Nes, N. (2005). Monetdb/x100: Hyper-pipelining query execution. In
CIDR, pages 225–237, Asilomar, CA, USA. 133

Chaudhuri, S. and Shim, K. (1994). Including Group-By in Query Optimization. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages 354–366, Santiago, Chile. 153,
160, 162

Copeland, G. P. and Khoshafian, S. N. (1985). A Decomposition Storage Model. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 268–279, Austin, Texas, US.
135

Datta, A., Moon, B., Ramamritham, K., Thomas, H., and Viguier, I. (1998). “Have your data and index
it, too” Efficient storage and indexing for data warehouses. Technical Report 98-7, Department of
Computer Science, University of Arizona, US. 135

Datta, A., Ramamritham, K., and Thomas, H. M. (1999). Curio: A novel solution for efficient storage
and indexing in data warehouses. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 730–733, Edinburgh, Scotland. 135

French, C. D. (1995). “One Size Fits All” Database Architectures do not Work for DDS. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 449–450, San Jose,

BIBLIOGRAPHY 226

California, USA. 133
French, C. D. (1997). Teaching an OLTP Database Kernel Advanced Datawarehousing. In Proceedings

of the IEEE International Conference on Data Engineering (ICDE), pages 194–198. 133
Galindo-Legaria, C. A. and Joshi, M. M. (2001). Orthogonal optimization of subqueries and aggregation.

In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 571–
581, Santa Barbara, California, USA. 153, 160

Golfarelli, M., Maio, D., and Rizzi, S. (1998). Conceptual design of data warehouses from E/R schemes.
In Proc. Hawaii Int. Conf. on System Sciences, vol. VII, pages 334–343, Kona, Hawaii. 17

Gupta, A., Harinarayan, V., and Quass, D. (1995). Aggregate-query processing in data warehousing
environments. In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 358–369, Zurich, Switzerland. 168

Gupta, H., Harinarayan, V., Rajaraman, A., and Ullman, J. D. (1997). Index selection for OLAP. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE), pages 208–219,
Birmingham, UK. 151

Halevy, A. Y. (2001). Answering queries using views: A survey. The VLDB Journal, 10:270–294. 165
Harinarayan, V., Rajaraman, A., and Ullman, J. D. (1996). Implementing data cubes efficiently. In

Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 205–
216, Montreal, Canada. 141, 142, 145, 147

Kimball, R. and Ross, M. (2002a). Data warehouse. La guida completa. Hoepli Informatica, Milano. 20
Kimball, R. and Ross, M. (2002b). The Data Warehouse Toolkit: How to Design Dimensional Data

Warehouses. Second Edition. J. Wiley & Sons, New York. 43
Moody, D. L. and Kortink, M. A. R. (2000). From enterprise models to dimensional models: A method-

ology for Data Warehouse and Data Mart design. In Proceedings of the International Workshop on
Design and Management of Data Warehouses (DMDW’2000), pages 1–12, Stockholm, Sweden. 41

Morfonios, K., Konakas, S., Ioannidis, Y., and Kotsis, N. (2007). ROLAP Implementation of the Data
Cube. ACM Computing Surveys, 39(4):12:1–12:53. 145

Nadeau, T. P. and Teorey, T. J. (2001). A Pareto Model for OLAP View Size Estimation. In Proc.
CASCON 2001 Conference (best paper award), (also in: Information Systems Frontiers 5,2 (2003),
pp. 137-147), pages 1–13, Toronto, Canada. 142

Nadeau, T. P. and Teorey, T. J. (2002). Achieving scalability in OLAP materialized view selection. In
Proceedings of the International Workshop on Data Warehousing and OLAP (DOLAP), pages 28–34,
McLean, Virginia, USA. 145

O’Neil, P. E. and Graefe, G. (1995). Multi-table joins through bitmapped join indices. SIGMOD Record,
24(3):8–11. 125

Shukla, A., Deshpande, P., Naughton, J. F., and Ramasamy, K. (1996). Storage estimation for multidi-
mensional aggregates in the presence of hierarchies. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), Bombay, India. 142

Shukla, A., Deshpande, P. M., and Naughton, J. F. (1998). Materialized view selection for multidimen-
sional datasets. In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 488–499, New York City, NY, USA. 147

Song, I., Rowe, W., Mesker, C., and Ewen, E. (2001). An analysis of many-to-many relationships be-
tween fact and dimension table in dimensional modeling. In Proceedings of the International Work-
shop on Design and Management of Data Warehouses (DMDW 2001), pages 6.1–6.13, Interlaken,
Switzerland. 50

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Mad-
den, S., O’Neil, E. J., O’Neil, P. E., Rasin, A., Tran, N., and Zdonik, S. B. (2005). C-Store: A Column-
oriented DBMS. In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 553–564, Trondheim, Norway. 135

Tsois, A. and Sellis, T. K. (2003). The generalized pre-grouping transformation: Aggregate-query op-
timization in the presence of dependencies. In Proceedings of the International Conference on Very

BIBLIOGRAPHY 227

Large Data Bases (VLDB), pages 644–655, Berlin, Germany. 153
Turner, M. J., Hammond, R., and Cotton, P. (1979). A DBMS for large statistical databases. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB), pages 319–327, Rio de
Janeiro, Brazil. 133

Valduriez, P. (1987). Join indices. ACM Transactions on Database Systems, 12(2):218–246. 124
Yan, W. P. and Larson, P. A. (1995). Eager aggregation and lazy aggregation. In The VLDB Journal,

pages 345–357. 153, 160, 162
Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H., and Urata, M. (2000). Answering complex

SQL queries using automatic summary tables. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 105–116, Dallas, Texas, USA. 168

BIBLIOGRAPHY 228

SUBJECT INDEX

A
Aggregate function

algebraic, 33
distributive, 32
holistic, 33

Attribute
multivalued, 20

B
Business Intelligence, 6

C
Column-oriented Systems, 133
Constellation schema, 28
CRM, 66

analytical, 68
customer analysis, 79
data warehouse logical design, 81
marketing analysis, 72
operational, 67
order fulfillment analysis, 78
products profitability, 73
returns analysis, 76
sales analysis, 70

Cube Model, 28
cuboid, 31
data warehouse lattice, 32
dice operation, 30
drill-up operation, 30
extended, 31
OLAP operations, 30
pivot operation, 30
roll-up operation, 30
slice operation, 30

Customer relationship management, see CRM

D
Data mining, 7
Data Warehouse, 6, 10

analysis-driven design, 37
candidate conceptual design, 41

case study, 52
changing dimensions, 39
commercial systems, 136
conceptual design quality control, 61
conceptual model, 17
data-driven design, 37
design, 35
final conceptual design, 43
how to model, 17
initial conceptual design, 40
logical design, 43
logical design quality control, 62
multidimensional cube model, 28
multidimensional relational model, 26
requirements analysis, 37
requirements specification, 38
what to model, 10

Data Warehousing, 9
Decision Support Systems, 5
DFM, see Dimensional Fact Model
Dimension, 11

degenerate, 19
multivalued, 20

Dimensional Fact Model, 17
Degenerate dimensions, 19
Descriptive attributes, 19
Dimensional Hierarchies, 18
Dimensions, 17
Facts, 17
Optional attributes, 19
Optional dimension, 19

DSS, see Decision Support Systems
data-driven, 6
model-driven, 6

E
Exploratory data analysis, 7

229

Subject Index 230

F
Fact, 10

accumulating snapshot, 21
dimension, 11, 23
dimensional attribute hierarchies, 26
dimensional attributes, 25
grain, 11
granularity, 20
measure, 11
periodic snapshot, 21
transaction, 21

G
Grain, 11
Group-by operator properties, 153, 156

double grouping, 160
grouping and counting, 162
invariant grouping, 158

H
Hierarchy, 11

balanced, 19
ragged, 19
recursive, 19
shared, 19
unbalanced, 19

I
Index, 121

bitmap, 123
bitmapped foreign column join, 126
bitmapped join, 126
foreign column join, 126
inverted, 121
join, 124
physical operators, 127, 128
star join, 125

Information system, 3
computerized, 3
decision support, 4
operational, 4
web-based, 4

K
Key Performance Indicators, 11
KPI, see Key Performance Indicators

M
Management Information Systems, 5
Materialized views, 139

BPS algorithm, 147
BPUS algorithm, 147
HRU algorithm, 142

lattice, 140
PGA algorithm, 145
selection of indexes, 150
size estimation, 142
with dimensional attributes, 149
with dimensional hierarchies, 150

Measure, 11
additive, 22
calculated, 23
non-additive, 23
semi-additive, 22

Metric, 11
Multidimensional data analysis, 7

O
OLAP, see On Line Analytic Processing
OLAP client, 87
OLAP server, 88

HOLAP, 88
MOLAP, 88
ROLAP, 88

OLTP, see On Line Transaction Processing
On Line Analytic Processing, 7
On Line Transaction Processing, 6

Q
Query rewriting with views, 165

with a query trasformation, 168, 182
with a view compensation, 168

S
Snowflake schema, 27
SQL Analytic, 89

CUBE, 93
NTILE, 110
partitions, 108
RANK, 108
ROLLUP, 92
windows, 113

Star query, 128
Star query plan

standard, 128
Star schema, 27

	Preface
	I Decision Support Systems and Multidimensional Modeling
	Decision Support Systems
	Information Systems
	Types of Information Systems
	Data Warehouse: A Decision Support Database
	Data Warehousing Architecture
	What to Model
	Concluding Remarks
	Summary

	Data Warehouse Modeling
	Conceptual Multidimensional Model
	Multidimensional Relational Model
	Multidimensional Cube Model
	Summary

	Data Warehouse Design
	Introduction
	Data Warehouse Design Approaches
	A Case Study
	Project Quality Control
	Summary

	A DW to Support Analytical CRM Analysis
	Introduction
	Operational and Analytical CRM
	Sales and Marketing Analysis
	Profitability Analysis
	Service Quality Analysis
	Customer Analysis
	Data Warehouse Logical Design
	Summary

	II Multidimensional Analysis
	Data Analysis
	OLAP Systems Solutions
	Data Analysis Using SQL
	Simple Reports with SQL
	Moderately Difficult Reports with SQL
	Very Difficult Reports Without Analytic SQL
	Summary

	III Data Warehouse Systems: Storage, Indexing and Query Evaluation
	Storage Structures and Star Query Plans
	Indexes Overview
	Special-Purpose Indexes
	Physical Operators
	Star Query Plans
	Column-Oriented Data Warehouse Systems
	New DW Platforms
	Commercial Systems for Data Warehouses
	Summary

	Materialized Views Selection
	Introduction
	The Lattice of Views
	View Sizes Estimation
	A Greedy Algorithm for the Selection of Materialized Views
	Other Algorithms for the Choice of the Views to Materialize
	The Selection of Indexes on Materialized Views
	Summary

	Optimization of Star Queries with Grouping
	Introduction
	Properties of Functional Dependencies and of the Group-by Operator
	First Case: Invariant Grouping
	Second Case: Double Grouping
	Third Case: Grouping and Counting
	Summary

	Query Rewriting Using Materialized Views
	Introduction
	Approach with a Compensation on the View
	Approach with a Transformation of the Query
	Summary

	Case Studies
	Hospital
	Airline Companies
	Airline Flights
	Inventory
	Hotels
	Mortgage Applications

	Case Studies: Solutions
	Hospital
	Airline Companies
	Airline Flights
	Inventory
	Hotels
	Mortgage Applications

	Glossary
	Bibliography
	Subject Index

