
Databases Essentials

Antonio Albano
University of Pisa

Department of Computer Science
tonio.albano@gmail.com

Copyright c© 2015 by Antonio Albano

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that the
first page of each copy bears this notice and the full citation including
title and authors. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission from the copyright
owner.

February 13, 2015
Revision, December 1, 2020

CONTENTS

1 Preliminaries 1
1.1 Introduction . 1

I Database: The Designer Perspective 5

2 Information Modeling 7
2.1 Introduction . 7
2.2 What to Model . 8
2.3 How to Model . 10
2.4 ODM: An Object Data Model . 11

2.4.1 Object . 11
2.4.2 Object Type . 11
2.4.3 Class . 12
2.4.4 Relationship . 13
2.4.5 Inheritance and Type Hierarchies . 14
2.4.6 Class Hierarchies . 15
2.4.7 Exercises . 18

3 The Relational Data Model 21
3.1 Introduction . 21
3.2 Relational Algebra . 23

3.2.1 Fundamental Operations . 24
3.2.2 Additional Operations . 26
3.2.3 Equivalence rules . 28
3.2.4 Exercises . 31

3.3 Relational Database Design: ODM-to-Relational Mapping 32
3.3.1 Exercises . 36

3.4 Relational Database Design: Normalization Theory 37
3.4.1 Functional Dependencies . 39
3.4.2 Inference Rules . 40
3.4.3 Closure of a Set of FDs . 40
3.4.4 Covers of Sets of Dependencies . 42

CONTENTS ii

3.4.5 Schema Decomposition . 43
3.4.6 Dependency Preserving Decomposition . 45
3.4.7 Normalization Using Functional Dependencies 46
3.4.8 Polynomial Algorithms to Normalize in 3NF and BCNF 47
3.4.9 Multivalued Dependencies and Fourth Normal Form 48
3.4.10 Exercises . 49

II DBMS: The User’s Perspective 51

4 Objectives of a DBMS 53
4.1 Introduction . 53
4.2 Functions of a DBMS . 54

4.2.1 Separation of Data Description and Data Manipulation 55
4.2.2 Database Languages . 56
4.2.3 Data Control . 57
4.2.4 A User-Accessible System Catalog . 58
4.2.5 Facilities for the Database Administrator 59

5 SQL: A Relational Database Language 61
5.1 Introduction . 61
5.2 The Data Definition Sublanguage . 61
5.3 Access Control . 62
5.4 The Query Sublanguage . 63
5.5 Aggregation over Data . 66
5.6 Nested Queries . 69
5.7 Queries that Require Universal Quantifiers . 69
5.8 Modifying Relation Instances . 71
5.9 Executing SQL Commands within Application Programs 72
5.10 Exercises . 75

III DBMS: The System Perspective 77

6 DBMS Architecture 79
6.1 Introduction . 79
6.2 Storing Collections of Records . 80

6.2.1 Page Structure . 81
6.2.2 Table Organizations . 82

6.3 Heap and Sequential Organizations . 82
6.4 Primary Key Organizations . 82
6.5 Solutions for Relational DBMS . 83
6.6 Query Processing . 84
6.7 Concurrency and Recovery . 91
6.8 Exercises . 94

CONTENTS iii

7 Final Remarks 97
7.1 Introduction . 97
7.2 Bibliographic Notes . 99

Bibliography 101

Subject Index 105

CONTENTS iv

Chapter 1

PRELIMINARIES

1.1 Introduction

The importance of information in today’s society is widely recognized. In this report, the at-
tention will be focused particularly on the need for information management in organizations,
considered as an organic collection of resources (people and materials), tools and procedures,
which are finalized to create and offer a product or a service. For example, a manufacturer
converts raw materials into a finished product, a bank provides financial services, and a hos-
pital supplies medical services.

Nowadays, information is considered to be a critical resource of any organization, as funda-
mental as capital or machinery, and, in fact, the majority of the labor force in the industrialized
countries works in some way with information.

Since organizations operate in a competitive environment, their information must not only
be accurate but must also be provided rapidly, in time to support the decision processes. For
this reason, all organizations have a structure which is dedicated to the management of infor-
mation, the information system: an organized collection of resources, people, and procedures
finalized to collect, store, process and communicate the information needed to support the
on-going activities.

Information can be represented as data, images, text, and voice. Clearly, different kinds of
organizations will have differing needs with respect to the types of information they use.
However, the attention here will be on information represented as structured data, shared by
a variety of users within an organization, and managed using computers. Reductions in the
costs of computer technology, improvements in performances, and new facilities to support
the development of applications have created an increasing demand for data processing sys-
tems. We use the term computerized information system to refer to the hardware and software
which is used for storing, retrieving, and processing the information which supports the func-
tions of an organization.1

When a computerized information system is implemented using database technology, it will
consist of an operational database and a collection of application programs (transactions) which are
used to access and update the data quickly and efficiently (Figure 1.1). The main goal of such
a transaction processing system is to maintain the correspondence between the database and
the real-world situation it is modeling as events occur in the real world.

The data are under the control of a Data Base Management System (DBMS), a centralized or
distributed software system, which provides the tools to define the database, to select the data

1. Frequently in the literature, “information system” is used as synonym of “computerized information system”.
Here, we prefer to make a distinction between the two terms to evidence the fact that a “computerized informa-
tion system” will never completly substitute the global “information system” of an organization.

1.1. Introduction 2

DB DBMS

Logistics

Production

Accounting

Inventory

Human Re-
sources

Sales and
Distribution

Figure 1.1: Transaction processing system

structures needed to store and retrieve the data easily, and to access the data, interactively or
by means of a programming language.

Another application domain in which databases play a key role is Decision Support. The main
goal of such applications is to turn the data into information useful to support management
decisions. Three categories of decision support are reports, multidimensional data analysis, and
exploratory data analysis with data mining techniques.

Decision support applications, sometimes called online analytic processing (OLAP), involve
quite complex queries which cannot be efficiently executed against operational databases, op-
timized for online transaction processing (OLTP). For this reason, organizations maintain a sep-
arate database, called data warehouse, specifically organized for such complex OLAP queries.

This report presents and discusses the principal topics in the database area that every com-
puter scientist and information systems professional should be familiar with. The emphasis is
on the concepts underlying database languages, systems and design. The discussion is orga-
nized into three main parts.
Part I, Database: The Designer Perspective, presents introductory and fundamental concepts
regarding information modeling. The problem of building a symbolic model of the knowledge
on some aspect of the world is addressed and an object formalism is introduced to define this
model. The formalism is used to explain the basic concepts used in the rest of the report. The
basic features of the relational model is also presented. The emphasis will be on the relational
model since it has gained wide acceptance among database researchers and practitioners and
has a solid theoretical basis. Moreover, an overview is given of the fundamental results of
normalization theory to design relational databases.
Part II, DBMS: The User’s Perspective, presents the functionality of a DBMS: the separation of
database description and application programs; database languages; data control; facilities for

1.1. Introduction 3

the database administrator. A large part of the presentation is devoted to the most important
feature characterizing a DBMS: the data model it supports, i.e. the abstraction mechanisms
used to model the databases. The basic features of the relational language SQL are also pre-
sented to define and use databases. The inclusion of SQL statements in a program written in
a conventional programming language is also discussed.
Part III, DBMS: The System Perspective, presents DBMS architectures and the features of the
basic functional components: the memory manager, which manages the allocation of space on
disk storage and the data structures to store and retrieve data efficiently; the query processor,
which attempts to transform a user’s request into an equivalent but more efficient form, thus
finding a good strategy for executing the query; the recovery manager, which ensures that the
database remains in a correct state despite hardware and software failures; the concurrency
controller, which ensures that concurrent interactions with the database can proceed without
conflicting with one another.

1.1. Introduction 4

Part I

Database: The Designer Perspective

5

Chapter 2

INFORMATION MODELING

2.1 Introduction

The notion of model is fundamental to all methods of analysis and design. A model repro-
duces the essential characteristics of a real world situation, ignoring those details which would
only represent an unnecessary complication with respect to the specific scope of the study be-
ing undertaken. A model is used for explicative or descriptive purposes (descriptive models), to
predict actions and events (predictive models), or to provide recommended courses of actions
(normative models). Models are distinguished by their structure: an iconic model retains some
of the physical characteristics of the entities represented (e.g., a scale model car in a wind
tunnel), whereas a symbolic model uses symbols to describe the real world. Symbolic models
are used in the analysis and design of information systems and we define them as follows:

� Definition 2.1
A symbolic model is a subjective formal representation of ideas and knowledge about
some aspects of the real world (domain of discourse), designed to serve an explicit pur-
pose.

Three fundamental aspects of this definition must be underlined:
1. A model is a representation of only some aspects of the real world to serve a purpose of

some kind.
2. The representation is given by a formal language.
3. The model is the result of an interpretation process which depends on the knowledge

possessed by the designer about the portion of the real world modeled.
Computer science offers different formalisms which can be used to build symbolic models
and, in particular, to represent information effectively, at varying degrees of detail. Different
features vary in significance at different levels of abstraction. This is well illustrated, for in-
stance, by a book of road maps. In planning a route, a traveller will look at the front of the
book which may well list the major cities and the numbers of the page where more detailed
information can be found. Looking at the relevant page, he finds the major roads with towns
represented as shaded areas. At the back of the book, detailed street maps which pinpoint the
destination more closely are often found. Clearly, in this case, there is a need for each type of
representation, according to the particular problem to be solved.

We will thus first consider the kind of knowledge for which we wish to build a computerized
information system, we will then show a graphic formalism which can be used to build models
to analyze information systems, i.e. to build a static representation of the information content
of a system, and finally we will present a formal language which can be used to implement
the model. The emphasis will be on the construction of a conceptual model, i.e. on a model

2.2. What to Model 8

built using a formalism which is suitable for natural and direct modeling. The examples in
the following sections mainly refer to the following case study.

Case study

We want to model the following facts about a university library:
– The bibliographic descriptions of the books, works with a single volume. The biblio-

graphic descriptions, which concern both books already purchased and those in order,
have an ISBN (International Standard Book Number), which identifies them, a title, the
authors, a publisher, the terms of the thesaurus that index them and a year of publica-
tion.

– Copies of available books that correspond to a bibliographic description. Available books
have an inventory number, which identifies them: a position code and the copy number.
A book can be loanable or cosultable only for shorter loan periods by university staff only.

– The authors of the books. The authors have a SSN (Social Security Number), which iden-
tifies them, a name and surname, a nationality and a birth date.

– The borrowers of the library. When a borrower takes a book on loan, the borrower’s details
are recorded, if they are not already present, the date of the loan and the due date. The
borrowers have a SSN, a name and surname, an address and telephone numbers. A
borrower can have multiple books on loan. The data on a loan is of interest until the time
the book is returned.
A borrower can be a university student or a university staff.

– The loans in progress.
– The thesaurus is a set of terms, and associations between them, which constitute the spe-

cialized lexicon to be used to describe the contents of the books.
Among the terms of the thesaurus the following relationships are of interest, among the
many possible:
– Preference (UseFor), for references from standard terms to non-standard terms and vice

versa. For example:
∗ Calculator Standard (Use) Computer;
∗ Computer Synonyms (UsedFor) Calculator, Calculating machine, Workstation;

– Hierarchy (UseAlso), to highlight the specificity-generality relationship between two
terms. For example:
∗ Feline MoreSpecific (NarrowerTerm) Cat, Lion, Tiger;
∗ Cat MoreGeneral (BroaderTerm) Feline;

2.2 What to Model

When constructing a computerized information system, the reality to be modeled is generally
considered with respect to: concrete knowledge, abstract knowledge, procedural knowledge, dynam-
ics, and communications.
Concrete knowledge concerns specific facts known of the system to be represented. Adopting
a simplified point of view, we will assume that the reality consists of entities, with certain
characteristics or properties, and of relationships between the entities, which evolve over time.

2.2. What to Model 9

� Definition 2.2
An entity is anything for which certain facts should be recorded, independently of the
existence of other entities.

In a library administration system, for instance, examples of entities can be a bibliographic
description, a book, a loan record or a user.

� Definition 2.3
A property is a fact about an entity which is not meaningful in itself, but only because it
describes an entity of interest.

Examples of properties in a library are the user’s name and address. The difference between
a property and an entity results from a different interpretation of the represented fact in the
model: properties are facts which are of interest only because they describe other facts which
are considered as entities.

Entities with the same properties are said to have the same type and they are classified into
the same collection (called also entity set). For instance, John, Mary, and Ann may be classified
into the collection Persons based on the fact that they have the same properties and represent
humans.

Collection of entities with the same type are certainly an important aspect of the knowledge
about the reality to be modeled, but much more information is carried by facts which establish
associations among entities.

� Definition 2.4
A relationship is a fact which correlates independent entities. As with entities, a collection
of similar relationships is called relationship set.

In the library, examples of relationships between entities can be the fact that a bibliographic
description refers to a book, or more than one book if more than one copy of the same book
exists, or the fact that the user Smith has borrowed a copy of a particular book.

A relationship is usually binary, that is involves two entities, but in general it may be n-ary.
Moreover, several relationship sets might involve the same entity sets.

If we take a picture of a given time slice of the reality, the entities of interest, the values of
their properties and the relationships in which they participate constitute a state of this reality.
In general, the reality undergoes changes because entities are subjects of processes. These may
be continuous processes or discrete event processes such as a change in the address of a user,
the loan of a book, the acquisition of a new book, etc.
Abstract knowledge concerns general facts which impose restrictions on the admissible values
of the concrete knowledge and on the way in which the values of the concrete knowledge can
evolve in time, or expresses rules to derive new information (integrity constraints).

In the library, examples of abstract knowledge are (a) the user properties Name, and Address,
which must have values of type string, whereas the BirthDate property will have values of type
date, (b) a book can be borrowed for two weeks, and two one-week extensions are allowed, if
the extension is performed before the due data, (c) any person may have on loan at most five
books at any time; the title of a book cannot be changed (d) the age of a person is computed
as the difference between the current year and the year of birth.

Relationships usually have certain constraints that limit the possible correlated entities. The
most important ones are the so called structural constraints or properties:

2.3. How to Model 10

– Cardinality, one or many, to specify how many entities of one collection may be associated
with entities of another collection.

– Partecipation, total or partial, to specify whether an entity of one collection can have entities
of another collection associated to it.

For example, a book is borrowed by at most one person, but a person can borrow several
books (the relationship is said to be one-to-many or 1:N). In contrast, the relationship AppearsIn
between authors and bibliographic descriptions, in which an author has written several books
and a book has been written by several authors, is said to be many-to-many or N:M. A book
must be related to a bibliographic description (total), but a bibliographic description may not
be related to a library book (partial).

Procedural knowledge concerns the elementary actions (or operations) in the application envi-
ronment which are applied to concrete knowledge to cause changes. It must be understood
that concrete knowledge is about the structure of the entities and procedural knowledge is
about their behavior. Moreover, while abstract knowledge imposes restrictions on possible val-
ues of concrete knowledge, procedural knowledge imposes restrictions on the possible ways
in which concrete knowledge can be used or modified.

Examples of elementary actions for a university student are: enroll, graduate, change ad-
dress, and change telephone number.

Dynamics concerns how concrete and procedural knowledge can be used to model complex
activities in the application environment.

Dynamics regards changes in the reality triggered by events and accomplished by standard
procedures. An example of such a procedure in a university situation is: when a professor
moves to another university, then stop salary; exclude the professor from mailing lists (usu-
ally more than one); for each course held by the professor, start procedure to assign new
professor; for each commission of which the professor was a member, start procedure for new
nominations; etc.

Finally, communications concern how information is entered in the information system and is
exchanged among members of the organization.

For the sake of simplicity we will not consider in the following, procedural knowledge, dy-
namics and communications.

2.3 How to Model

To construct a conceptual model of an information system we define the schema, a collection
of time-invariant definitions which model respectively (a) the structure of admissible data,
as well as integrity constraints, (b) the procedural knowledge (intensional aspects). The cre-
ative part of conceptual modeling is deciding what collection of entities, relationships, and
constraints to include in the schema to model the observed reality. So, this modeling activity
requires a good deal of creativity, technical expertise, and understanding of the application
domain. After the conceptual schema has been defined, there are straightforward ways of
converting the design into an implementation, as it will be shown later.

Different formalisms, each supporting a specific data model, can be used to define the
conceptual schema.

2.4. ODM: An Object Data Model 11

� Definition 2.5
A data model is a set of abstraction mechanisms, with associated operators and implicit
integrity constraints, used to define a database schema.

As a first example of a data model, let us examine the features of a so-called object data model
(ODM), with abstraction mechanisms to model the user’s conceptualization of the applica-
tion domain, naturally and directly. This kind of data model was originally proposed as a
formalism for the analysis and design of information systems, but nowadays such model is
also supported by a new generation of DBMS.

2.4 ODM: An Object Data Model

The basic abstraction mechanisms of an object data model (ODM) are: object, type, class, rela-
tionship, inheritance, type hierarchies, and class hierarchies. For simplicity, in this section we will
only describe how structural aspects of the reality can be modeled using a graphic formalism.

2.4.1 Object

An object is the computer representation of certain facts about an entity of the observed world.
An object is a software entity which has an internal state (instance variables) and it is equipped
with a set of local operations (methods) to manipulate that state. The request to an object to
execute an operation is called a message, to which the object can reply. The structure of an
object state is modeled by a set of variables (or attributes) which can have values of arbitrary
complexity, including other objects which become components of the object. When the state
of an object can only be accessed and modified through operations associated to that object,
we say that the object is a data abstraction or that it encapsulate its state.

Finally, each object is distinct from all other objects and has an identity that persists over
time, independently of changes to the value of its state, e.g., if X and Y are identifiers bound
to objects of type T , X will be equal to Y if they are bound to the same object. For instance,
the object representing the person John is different from any other object representing another
person, but will remain the same even if his address or some other attribute changes.

2.4.2 Object Type

An object is an instance of a type defined with a generative type constuctor, i.e. each object type
definition produces a new type, which is different from any other previously defined types.
An object type describes the state fields and the implementation of methods of its possible
instances. An object type definition introduces a constructor of its instances, and so an object
can be constructed only after its object type definition has been given.

In the object programming context this approach to objects is called class-based since the
description of objects is called a class; we prefer the term “type” since we will use “class” with
a different meaning according to the database tradition.

The signature ⇓T of an object type T is the set of label-type pairs of the messages which can
be sent to its instances.

Each object is a value of a certain type and objects of the same type have the same properties,
i.e. they have the same structure and the same operations, specified by the type definition. The

2.4. ODM: An Object Data Model 12

operations (the methods) to manipulate the state are specified by giving a specific implemen-
tation (concrete behavior), but in the following they will not be considered because are beyond
the scope of this notes.

The type mechanism makes it possible to create many objects of the same type using an
appropriate constructor.

The following example shows a graphical representation of an object type.1

Example 2.1
Attributes are represented by the pair (Name :Type). An attribute type can be primitive
(int, real, bool, date, string), an enumeration (a specific set of label in upper case letters
(A1; . . . ;An)) a record ([A1 : T1, . . . ,An : Tn]), or a sequence (seq T).

Person

Name :string
Surname :string
BirthDate :date
Sex :(M; F)
Address :[Street :string;

Town :string]
SpokenLanguages :seq string

Figure 2.1: Graphical representation of an object type

2.4.3 Class

An object data model supports a mechanism to define a collection of homogeneous values
to model multivalued attributes or collections of objects to model databases. Usually two
different mechanisms are provided:
1. To model multivalued attributes, type constructors are available for bags, lists (or se-

quences), and sets. For the sake of simplicity we will only consider sequences.
2. To model databases a mechanism called class is provided. A class is a modifiable sequence

of objects with the same type. A class definition has two different effects:
– It introduces the definition of the type T of its elements and a constructor for values of

this type (intensional aspect).
– It supplies a name to denote the modifiable sequence of the elements of type T currently

in the database (extensional aspect).
We assume that when an object with the type of the elements of a class is constructed, then
the object will itself become an element of that class.

To simplify the graphical representation of a database conceptual schema we will not use a
new graphical notation for classes, but we will assume that
– the only object types modeled are those which are also elements of a class, and

1. Currently there is no standard notation for an ODM model. Most books use the ER notation. We instead use a
notation based on UML (Unified Modelling Language).

2.4. ODM: An Object Data Model 13

– the object type name is also the class name.

Therefore, in the following, a definition such as that in Figure 2.1 will be used for a the class
Persons with the element structure the one shown.

2.4.4 Relationship

Classes of objects model sets of entities of the observed world, while relationships between
such entities of are represented with a separate mechanism as shown with the following
examples.

Example 2.2
Figure 2.2 shows a graphical representation of classes with different level of details: (a)
class name only, (b) class name and the attributes of its elements, and (c) class name, the
attributes of its elements together with their values type.

Persons

(a)

Persons
Name
Surname
BirthDate
Sex
Address
SpokenLanguages

(b)

Persons

Name :string
Surname :string
BirthDate :date
Sex :(M; F)
Address :[Street :string;

Town :string]
SpokenLanguages :seq string

(c)

Figure 2.2: Graphical representation of classes

Example 2.3
A binary relationship between classes is represented by an oriented arc (Figure 2.3a).
The arc is labeled with the relationships name. A binary relationship with attributes is
represented by a relationship class attached to the arc using a dashed line (Figure 2.3b),
or as a class (Figure 2.3c). The arcs may be labeled to clarify the role that entities play in
the relationship: in this case the labels are used to name direct and inverse relationships;
the labels are mandatory in the case of recursive relationships (Figure 2.3d).

The graphic notation represents also the structural properties of relationships: cardi-
nality and partecipation, to model respectively how many elements of one class can be
associated with elements of another class and whether an element of one class can have el-
ements of another class associated to it. Multivalued relationships are represented graph-
ically with a double arrow; optional relationships with a crossed line.

For example, a student might have passed zero or more exams, but an exam result
must be associated to a student.

Figure 2.4 shows an initial conceptual schema for a library information system.

2.4. ODM: An Object Data Model 14

Students Exams
PassedBy

(a)

Borrowers Books

LoanedBy

Date :date

(b)

Loans
Date :date

Borrowers Books
LoanedBy Concerns

(c)

Persons

HasMother

IsMotherOf

HasChildren

(d)

Figure 2.3: Graphical representation of relationships

Borrowers

Authors

Terms
Bibliographic
Descriptions

Loans

Books

Use

UsedFor

UseFor

BroaderTerm

UseAlso

NarrowerTerms

Indexes

LoanedBy Concerns

AppearsIn DescribedBy

Figure 2.4: An initial conceptual schema for a library

2.4.5 Inheritance and Type Hierarchies

Inheritance is a mechanism which allows something to be defined, typically an object type,
by only describing how it differs from a previously defined one. Inheritance should not be
confused with subtyping: subtyping is a relation between types such that when T 6 S, then
any operation which can be applied to any value of type S can also be applied to any value of
type T. The subtype relation (IsA) is asymmetric, reflexive and transitive.

The two notions are sometimes confused because, in object languages, inheritance is gener-
ally only used to define object subtypes, and object subtypes can only be defined by inheri-
tance. However, we will keep the two terms distinct and will use each of them with its proper
meaning.

Inheritance can be strict, when properties of the supertype can only be redefined in a con-

2.4. ODM: An Object Data Model 15

trolled fashion, or non-strict, when they can be redefined freely. When inheritance is strict, we
assume that properties can be redefined only by specializing their type and thus a value of the
subtype T1 can be used in all contexts in which an element of the supertype T2 is expected
(context inheritance).

In a subtype definition, a property of the supertype can be redefined (overriding), and its
meaning in an object is then that given in the most specialized type to which the object
belongs (late binding).

A subtype can be defined from a single supertype (simple inheritance) or from several super-
types (multiple inheritance).

2.4.6 Class Hierarchies

This is an asymmetric, reflexive and transitive relation on the set of classes, such that if
(C1 SubsetOfC2), then C1 is said to be a subclass of C2 and the following properties hold:
– The type of the elements of C1 is a subtype of the type of the elements of C2 (intensional

constraint).
– The elements of C1 are a subset of the elements of C2 (extensional constraint), and C1 inherits

the relationships defined on C2 .

Example 2.4
If we are interested both in Persons and Students, we have to model two different and
essential facts: the type of Students elements is a subtype of the type Persons elements,
because all the possible students are a subset of all the possible persons; the set of all actual
Students, is a subset of all actual Persons (i.e. the class Students is a subclass of the class
Persons) (Figure 2.5).

Persons

Name :string
BirhDate :date
SpokenLanguages :seq string

Students

StudentNo :int
RegistrationYear :int

Figure 2.5: A subclass example

Note that in object-oriented programming languages, such as Java or C++, an object type
is called class and so the graphical notation shown in the figure is used to model an object
subtype defined by inheritance, called a subclass (intensional aspect). Instead the notion of
class of the database ODM has also an extensional aspect and denotes a modifiable sequence
of the elements of an object type currently in the database, while a subclass is a subset of
a class.

A subclass can be defined from a single superclass (simple inheritance) or from several super-
classes (multiple inheritance) (Figure 2.6).

Moreover on subclasses of the same superclass can be defined two kinds of constraints:
overlap and covering.

2.4. ODM: An Object Data Model 16

Persons

Students Emplyees

Instructors

Figure 2.6: Subclasses with multiple inheritance

A no overlap (disjoint) constraints specify whether two subclasses are not allowed to contain the
same element. We denote this by drawing a small black circle (Figure 2.7b). In the absence of
this constraint, we assume by default that the subclasses are allowed to contain same elements
(Figure 2.7a).

A covering constraints specify whether the objects in the subclasses collectively include all
the elements in the superclass. We denote this by drawing the hierarchy with a double line
(Figure 2.7c). In the absence of this constraint, we assume by default that there is no covering
constraint. When the union of the sets of the elements of the subclasses are disjoint and equal
to the set of the elements of the superclass, we call the hierarchy a generalization (Figure 2.7d).

Persons

Adults Drivers

(a) Overlapping subsets

Students

Freshman Graduates

(b) Non overlapping subsets

Drivers

CarDrivers TruckDrivers

(c) Overlapping cover

Persons

Adults Childrens

(d) Non overlapping cover

Figure 2.7: Kinds of subclasses

A refined library conceptual schema using subclasses is shown in Figure 2.8 with the class at-
tributes. Elements of classes can be constrained to be uniquely identified by certain attributes,
called keys. Attributes of a key are marked with a �K� or are underlined. Attributes of
different keys are marked with a�Ki� or are underlined differently.
Usually there are two ways to populate subclasses:

2.4. ODM: An Object Data Model 17

Borrowers

SSN :int �K�
Name :string
Address :string
Phones :seq string

Authors

SSN :int �K�
Name :string
Nationality :string
BirthDate :date

Terms

Term :string �K�

Bibliographic
Descriptions

ISBN :string �K�
Title :string
Publisher :string
Year :int

Loans

Date :date
DueDate :date

Books

Position :string �K�
CopyNumber :int �K�

Students

StudentNo :int �K�
UniversityStaff

OfficePhone :string

Loanable Consultable

ForDays :int

RegularsForConsultation

Use

UsedFor

UseFor

BroaderTerm

UseAlso

NarrowerTerm

TakenBy Concerns

Concerns

LoanedBy

Indexes

AppearsIn

DescribedBy

Figure 2.8: A refined conceptual schema for a library with class attributes

- A subclass can be populated simply by creating elements with an appropriate construc-
tor, and these elements will also appear as elements of its superclasses, because of the
extensional constraint of the subclass relation.

- A subclass can be populated also by moving objects from a superclass into the subclass.
Thus, objects can change the most specific class to which they belong during their life-time.
For example, a person can belong to the subclass of students, then employees, and finally
be just a person again.

Because of the semantics of the extensional constraint of the subclass relation, when an object
is removed from a class, it is also removed from its subclasses; but when it is removed from a
subclass, it will remain in the superclasses.

Subtype, inheritance, and subset are three different kinds of relations between types and
values of an object language. Subtype is a relation between types which implies value substi-
tutability; inheritance is a relation between definitions, which means that the inheriting defini-
tion is specified “by difference” with respect to the super-definition; subset is a subset relation
between collections of objects, which also implies a subtype relation between the types of
their elements. Languages exist that support only subtypes, or subtypes and inheritance, or
subtypes, inheritance and subsets.

Several alternative graphical notations have proposed for modeling databases. The most pop-
ular is the entity-relationship (ER) diagram, introduced by Chen in the 1976 and later extended
with hierarchies. More recently the Unified Modeling Language (UML) is becoming the stan-
dard notation for object modeling. Several tools also exists to specify diagrams, examples are:

2.4. ODM: An Object Data Model 18

ERwin from Computer Associates, ER/Studio from Embarcadero Technologies, and Relational
Rose from Rational Software for UML. In addition, DBMS vendors provide their own design
tools, such as Oracle Designer and Power Designer from Sybase. Just to give an idea of the alter-
native graphical notations, the library schema in Figure 2.8 is shown in Figure 2.9 using the
ER notation.

TermsTerm

UseAlso

BroaderTerm

(0:1)

NarrowerTerms

(0:N)

UsedFor

Use

(0:1)

UseFor

(0:N)

Indexes
(1:N) Bibliographic

Descriptions
(1:N)

ISBN
Title

Publisher

Year

AppearsIn

(1:N)

DescribedBy

(0:N)

Authors
(1:N)

SSNName

Nationality

BirthYear

Books
(1:1)

Position

CopyNumber

Borrowers SSN

Name

Address

Phones
ISA

disjoint

Students

StudentNo

UniversityStaff

Office
Phone

Loans

Date

DueDate

Books

ISA
disjoint

ConsultableLoanable

ForDays

ISA

disjoint

RegularsForConsultation

LoanedBy

(1:1)

(0:N)

TakenBy

(1:1)

(0:N)
Concerns

(1:1)

(0:1)

Concerns

(0:1)

(1:1)

Figure 2.9: The library schema with an Entity-Relationship diagram

2.4.7 Exercises

1. We would like to design a database for the following facts. A train has a unique number
and a driver. Trains are either local or express, but never both. A station has a unique name
and an address. Stations are either main or secondary, but never both. Local trains stop at

2.4. ODM: An Object Data Model 19

all stations. Express trains stop only at the main stations. Each stop of a train in a station
has a duration time. Design a conceptual schema for the database.

2. Design a conceptual schema for a database to keep track of actors and directors of films.
Each actor or director has a unique name, a birth year, and a nationality. An actor may
be also a director. Each film has a title, the production year, the actors, a director, and a
producer. Films produced the same year have different titles.

3. Consider the following information about a manufacturing company’s parts and suppliers
database. The database contains information about the way certain parts are manufactured
out of other parts: the subparts that are involved in the manufacture of a part, the number
of subparts used, the cost of manufacturing a part from its subparts, the mass of the part
as result of the subparts assemblage. The manufactured parts may themselves be subparts
in a further manufacturing process. In addition, certain information must be held on the
parts themselves: their unique code, name and, if they are imported (i.e., manufactured
externally), the supplier and the purchase cost. Suppliers have an unique name, an address
and several phones. Design a conceptual schema for the database.

4. We would like to design a database to maintain information for an administrator of condo-
minium (i.e. a block of flats). Each condominium has a code (the key), an address and the
number of the checking account where should be payed the supported expenses. A con-
dominium is made of flats, and we are interested in the flat number, the number rooms,
the surface, the state (free or occupied). The flats can be rented, and we are interested in
tenants name, the social-security numbers (the key), the telephones (more than one) and
the balance, that is the amount that tenant must pay for running expenses. Some rented
flats can have been noticed, and in this case we are interested in the date of the notice. A
flat can have several owners, and an owner can possess several flats. Of every owner we are
interested in the name, the social-security numbers (the key), the address, the telephones
(more than one) and the balance, that is the sum that the owner must pay for supported
expenses. Maintenance expenses for the condominium are described by the code of identi-
fication, the nature (light, cleaning, elevator, etc), the date and the amount. (Optional) The
expenses are classified as extraordinary, to be paid by owners, or as ordinary to be paid by
tenants. Ordinary expenses must be paid in one installment, while extraordinary expenses
can be paid in more installments, and for each of them it is necessary to remember the date
and the amount.

5. Design a conceptual schema for a Company database to keep track of a company’s em-
ployees, departments, and projects. The company is organized into departments. Each de-
partment has a unique name, a unique number, a location, and a manager who is one of
its employees. We keep track of the start date when the employee began managing the de-
partment. A department controls a number of projects, each of which has a unique name, a
unique number. An employee has a name, a social security number, address, salary, sex (m
or f), and birthdate. An employee is assigned to one department but may work on several
projects, which are not necessarily controlled by the same department. We keep track of
the percent-time that an employee works on each project. We also keep track of the direct
supervisor of each employee, who belong to the same department, and the start date when
the employee began acting as supervisor. We want to keep track of the dependents of each
employee for insurance purposes. We keep each dependent’s name, sex, birthdate, and re-
lationship (spouse or child or other) to the employee (assume that only one parent works
for the company). We are not interested in information about dependents once the parent
leaves the company.

2.4. ODM: An Object Data Model 20

Chapter 3

THE RELATIONAL DATA MODEL

3.1 Introduction

The relational data model, defined by Codd in 1970, has been supported by DBMSs from
the mid-1970s on. Such systems soon became popular, mainly because of the simplicity of
the data model and the facilities they provide to allow easy access to the data for non-expert
users. Several implementations exist and are available on many types of personal computers,
and workstations (e.g., ORACLE, DB2, SQL Server, Sybase).

The relational data model supports a very simple, tabular view of the data, with a direct
correspondence to the mathematical concept of a relation. Following the proposal of the rela-
tional data model, an important theory has been developed to assist in the design of relational
databases; this theory will be presented in the next section.

The relational data model describe databases in terms of sets of tuples (records) and as-
sociations among data in terms of values of attributes, and not using a specific abstraction
mechanism. This way of describing associations looks similar to the solution adopted in ob-
ject data models, but there are important differences in the modeling capabilities of these two
data models:

- In the object data model the structure of the objects can be complex, whereas in the rela-
tional data model the structure of a tuple is simple, i.e. the values of the components of a
tuple are elementary.

- In the object data model the associations model set of object tuples, whereas in the rela-
tional data model associations are described by attributes which can only have the value of
the key of the associated elements of some other relation as their values.

- In the object data model the structure of an object is defined together with the representa-
tion of the procedural knowledge, whereas in the relational data model only a mechanism
to describe the structure of the tuples is provided.

A number of studies which aim at overcoming some of the limitations of the relational data
model are now in course, and references to them are given in the bibliographic notes.

� Definition 3.1
A relational database is described by a set of relation schemas R : {T } defined as follows:

- integers, floats, booleans, and strings are primitive types.
- If T1, . . . , Tn are primitive types, and A1, . . . ,An are distinct attribute names, then
(A1 : T1, . . . ,An : Tn) is a tuple type of degree n. The attributes order is unimportant. Two
tuple types are equal if they have the same degree and the same set of pairs (Ai : Ti).

- If T is a tuple type, then {T } is a relation type. Two relation types are equal if they have
the same tuple types.

- A relation schema R : {T } is a variable R with a relation type.

3.1. Introduction 22

� Definition 3.2
A tuple (A1 := V1, . . . ,An := Vn) of type T = (A1 : T1, . . . ,An : Tn) is a set of pairs
(Ai,Vi) with Vi of type Ti. Two tuples with the same type are equal if they have the
same set of pairs (Ai,Vi). The extension of a relation schema R : {T } is a finite set of
tuples of type {T }, called a relation. The cardinality of a relation is the number of its
tuples. Two relations of the same type are equal if have the same sets of tuples.
The extension of a relational database is a collection of the extensions of its relation
schemas.

� Definition 3.3
A key for a relation is a minimal subset of attributes whose values identify a tuple. Out
of all the possible keys the database designer identify a primary key.

An example of a relational database schema is:

Students:{(Name: string, StudentNo: string, City: string, BirthYear: int)}
ExamResults:{(Subject: string, Candidate: string, Date: string, Grade: int)}

where the attribute StudentNo is the primary key for the relation Students, and the attribute
Candidate in ExamResults, whose values match those of the primary key of the Students re-
lation, is called a foreign key. The grade of an exam is an integer value between 18 and 30. A
foreign key is used to model associations.

For simplicity in the following, instead of the notation R : {(A1 : T1, . . . ,An : Tn)}, we will
use as standard notation R(A1 : T1, . . . ,An : Tn) to denote a relation with name R and type
{(A1 : T1, . . . ,An : Tn)}, which will be further abbreviated to R(A1, . . . ,An) when the type
of the attributes is not important. The primary key attributes are underlined and those of a
foreign key are marked with an asterisk.

Example 3.1
A relational database schema for the example in Figure 3.1 is the following:

Authors

SSN :int �K�
Name :string
Nationality :string
BirthDate :date

Bibliographic
Descriptions

ISBN :string �K�
Title :string
Publisher :string
Year :int

Books

Position :string �K�
CopyNumber :int �K�

AppearsIn

DescribedBy

Figure 3.1: A database conceptual schema

Authors(SSN, Name, Nationality, BirthDate)
BibliographicDescriptions(ISBN, Title, Publisher, Year)
Books(ISBN*, Position, CopyNumber)
AuthorsAppearsIn(SSN*, ISBN*)

3.2. Relational Algebra 23

Figure 3.2 shows a graphical notation for representing relational schemas: a rectangle repre-
sents a relation schema and directed arrows from R to S represent an association between them
with a foreign key defined in R for S. Attributes of a primary key are marked with a �PK�.
Attributes of other candidate keys are marked with a�CK�. Attributes of a foreign key in R for
S are marked with a �FK(S)�. Later on we will describe how to design a relational schema
from a conceptual one.

Students

StudentNo :int �K�
Name :string
City :string
BirthDate :date

ExamResults

Candidate :int �K�
Subject :string �K�
Date :date
Grade :int

PassedBy

ODM schema

Students ExamResults
Candidate

Relational schema

Students

StudentNo :int �PK�
Name :string
City :string
BirthDate :date

ExamResults

Candidate :int �PK�
�FK(Students)�

Subject :string �PK�
Date :date
Grade :int

Candidate

Relational schema with attributes and keys

Figure 3.2: A graphical notation for a relational schema

3.2 Relational Algebra

The relational data model supports operations on relations whose results are themselves rela-
tions. These operations can be combined using an algebraic notation called relational algebra.
Let E be a relational expression defined using relations in the database or constant relations.1
There are six fundamental operations in relational algebra: rename, project, select, set union, set
difference, and product; we shall also mention some additional operations which serve as useful
shorthand.

1. A constant relation is written by listing its tuples within { }, for example {(A1 := 2,A2 := 125); (A1 := 3,A2 :=
250)}.

3.2. Relational Algebra 24

3.2.1 Fundamental Operations

Rename: ρA1 ← B1,A2 ← B2, . . . ,Am ← Bm
(E)

A1,A2, . . . ,Am are attributes of E, and B1,B2, . . . ,Bm are not attributes of E. The result is
a relation with type {(B1 : T1,B2 : T2, . . . ,Bm : Tm)} whose tuples are those of E with the
attributes Ai renamed to Bi.

Project: πA1,A2, . . . ,Am (E)

A1,A2, . . . ,Am are attributes of E. The result is a relation with type {(A1 : T1,A2 : T2, . . . ,Am :
Tm)} whose tuples are those of E with only the attributes A1,A2, . . . ,Am. Since the result is a
set, any duplicate tuples are eliminated.

Select: σCondition (E)

The result is a relation with the same type as E, whose tuples are those of E which satisfy the
condition.

Set union: E1 ∪ E2

E1 and E2 are relations of the same type {T }. The result is a relation with type {T } whose tuples
are those which are in E1 or E2 or both.

Set difference: E1 − E2

E1 and E2 are relations of the same type {T }. The result is a relation with type {T } whose tuples
are those which are in E1 but not in E2.

Product: E1 × E2

E1 and E2 are relations of type {(A1 : T1, . . . ,An : Tn)} and {(An+1 : Tn+1, . . . , An+m : Tn+m)}
with disjoint set of attributes. The result is a relation of type {(A1 : T1, . . . ,An : Tn,An+1 :
Tn+1, . . . ,An+m : Tn+m)} whose tuples t are all possible concatenation of tuples t1 ◦ t2 whose
first n components form a tuple t1 in E1 and whose last m components form a tuple t2 in E2.
Let us show how these operators can be used to write queries using the following database2:

Students

Name StudentNo City BirthYear

Isaia 71523 Pisa 1962
Rossi 67459 Lucca 1960
Bianchi 79856 Livorno 1961
Bonini 75649 Pisa 1962

ExamResults

Subject Candidate* Date Grade

DA 71523 12/01/85 28
DA 67459 15/09/84 30
MTI 79856 25/10/84 30
DA 75649 27/06/84 25
LFC 71523 10/10/83 18

2. The grade of an exam has a value between 18 and 30.

3.2. Relational Algebra 25

Example 3.2
First, we find the name, and the student code of all the students of Pisa.

πName, StudentNo (σCity= ′Pisa ′ (Students))

Name StudentNo

Isaia 71523
Bonini 75649

Next, suppose we want to find the names of all those students, who have passed the exam
“DA” with grade 30, plus the examination date. Let us compute the result in more than
one step, using the following strategy: since we need information from both the Students
and the ExamResults relations, let us first compute the product of the two relations,
producing the following temporary relation T :
T := Students × ExamResults

which can be very large: if there are n tuples in Students and m tuples in ExamResults,
then there are n×m tuples in T .

Name StudentNo City BirthYear Subject Candidate Date Grade

Isaia 71523 Pisa 1962 DA 71523 12/01/85 28
Isaia 71523 Pisa 1962 DA 67459 15/09/84 30
Isaia 71523 Pisa 1962 MTI 79856 25/10/84 30
Isaia 71523 Pisa 1962 DA 75649 27/06/84 25
Isaia 71523 Pisa 1962 LFC 71523 10/10/83 18
Rossi 67459 Lucca 1960 DA 71523 12/01/85 28
Rossi 67459 Lucca 1960 DA 67459 15/09/84 30
Rossi 67459 Lucca 1960 MTI 79856 25/10/84 30
Rossi 67459 Lucca 1960 DA 75649 27/06/84 25
Rossi 67459 Lucca 1960 LFC 71523 10/10/83 18
Bianchi 79856 Livorno 1961 DA 71523 12/01/85 28
Bianchi 79856 Livorno 1961 DA 67459 15/09/84 30
Bianchi 79856 Livorno 1961 MTI 79856 25/10/84 30
Bianchi 79856 Livorno 1961 DA 75649 27/06/84 25
Bianchi 79856 Livorno 1961 LFC 71523 10/10/83 18
Bonini 75649 Pisa 1962 DA 71523 12/01/85 28
Bonini 75649 Pisa 1962 DA 67459 15/09/84 30
Bonini 75649 Pisa 1962 MTI 79856 25/10/84 30
Bonini 75649 Pisa 1962 DA 75649 27/06/84 25
Bonini 75649 Pisa 1962 LFC 71523 10/10/83 18

However the only meaningful tuples in T are those with equal values for the attributes
StudentNo and Candidate.
R := σStudentNo = Candidate (T)

Name StudentNo City BirthYear Subject Candidate Date Grade

Isaia 71523 Pisa 1962 DA 71523 12/01/85 28
Isaia 71523 Pisa 1962 LFC 71523 10/10/83 18
Rossi 67459 Lucca 1960 DA 67459 15/09/84 30
Bianchi 79856 Livorno 1961 MTI 79856 25/10/84 30
Bonini 75649 Pisa 1962 DA 75649 27/06/84 25

3.2. Relational Algebra 26

The final answer to our query is the result of the expression:

πName, Date (σSubject = ’DA’ ∧ Grade = 30 (R))

The same result might have been obtained with the expression

πName, Date (σSubject = ’DA’ ∧ Grade = 30 ∧ StudentNo = Candidate
(Students × ExamResults))

As matter of fact, the result of the above expression can be computed in a more efficient way
than that shown above. This is a property of a relational manipulation language: a complex
expression is a way of specifying the result declaratively, without forcing the system to follow
certain steps, as happens in the first case shown above. The system chooses the best strategy
by estimating the cost of obtaining the query answer according to different alternatives. We
will discuss this aspect in more detail later on.

3.2.2 Additional Operations

Examples of additional and very useful operators that can be expressed in terms of the six
basic operators above are intersect, join, natural join and division.

Set intersection: E1 ∩ E2

E1 and E2 are relations of the same type {T }. The result is a relation with type {T } whose tuples
are those which are both in E1 and in E2.

Join: E1
./

Ai = Aj
E2

E1 and E2 are relations of type {(A1 : T1, . . . ,An : Tn)} and {(An+1 : Tn+1, . . . , An+m : Tn+m)}
with disjoint set of attributes, Ai an attribute of E1 and Aj an attribute of E2.

The join E1
./

Ai = Aj
E2 is equivalent to σAi = Aj

(E1 × E2).

Natural Join: (E1 ./ E2)

The natural join is only applicable when both E1 and E2 have attributes with the same name.
Let A1, . . . ,An be the common attributes of E1 and E2, Y be only attributes of E1 and Z be only
attributes of E2. The natural join can be defined as follows.
1. Let us change the types of E1 and E2 in order to make different the common attributes:

E ′1 = ρA1 ← E1A1, . . . ,An ← E1An
(E1) and

E ′2 = ρA1 ← E2A1, . . . ,An ← E2An
(E2).

2. Let T = σE1A1 = E2A1 ∧ . . . ∧ E1An = E2An
(E ′1 × E ′2).

3. The natural join of E1 and E2 is the relation

ρE1A1 ← A1, . . . ,E1An ← An
(πE1A1, . . . ,E1An, YZ (T)).

Note that
– if E1 and E2 have not common attributes, E1 ./ E2 ≡ E1 × E2;
– if E1 and E2 have the same type, E1 ./ E2 ≡ E1 ∩ E2.

3.2. Relational Algebra 27

Division: E1 ÷ E2

Let XY be the attributes of E1 and Y be the attributes of E2. Then W = E1 ÷ E2 is a relation
with attributes X such that

W = {w | ∀s ∈ E2.(w ◦ s ∈ E1)}

The division operation is expressible in relational algebra as follows:

E1 ÷ E2 ≡ πX(E1)− “the tuples in πX(E1) that are not in E1 ÷ E2”
E1 ÷ E2 ≡ πX(E1)− πX((πX(E1)× E2) − E1)

Let W and S be two relations with disjoint set of attributes and R be a relation with the union of
their attributes. The product and division operators satisfy the following properties:

(W × S)÷ S =W and (R÷ S)× S ⊆ R
Let us see an example of query which requires the division operator. Given Enrolls(StudentNo,
Course) and Teaches(Teacher, Course), find the codes of students who take every course taught
by ’Tao’. The desired answer is given by the expression:

Enrolls ÷ πCourse(σTeacher = ’Tao’(Teaches))

Two useful extended relational algebra operations

Generalized projection: πe1 AS Ide1, e2 AS Ide2, . . . , en AS Iden (E)

where each of e1, . . . , en is an arithmetic expression involving constants and attributes in the
type of E, and Ide1, . . . , Iden is a set of different attributes. The result is a relation with type
{(Ide1 : Te1 , . . . , Iden : Ten)}

For example, if A1,A2, . . . ,Am are integer attributes in R, we can write the following expres-
sion:

πA1, 2 AS Two, A1 +A3 AS A1PlusA3 (R)

Grouping operator: A1, . . . ,Anγ f1, . . . , fm (E)

where A1, . . . ,An is a list of attributes of E on which to group; each fi is an aggregate function
applied to attributes of E, which takes a collection of values and return a single value as
result. Common aggregate functions include min, max, count, sum, and avg. For example, the
aggregate function sum takes a collection of values and returns the sum of the values. Thus,
the function sum applied on the collection {1, 1, 4, 4} returns the value 10.

The result is a relation with type {(A1 : T1, . . . ,An : Tn, f1 : Tn+1, . . . , fm : Tn+m)}
The meaning of the operation is as follows (Figure 3.3):

1. The tuples of R are partitioned in groups in such a way that all the tuples in a group have
the same values for A1, . . . ,An.

2. For each group with attributes values a1, . . . ,an, the result has a tuple

(A1 := a1, . . . ,An := an, f1 := v1, . . . , fk := vk)

where for each i, vi is the result of applying the aggregation function fi on the multiset of
Bi values in the group.

3.2. Relational Algebra 28

——————————————————

A1,A2,...,Anγ...(R)

——————

——
——————
————

——————

——
——————
————

...γf1,f2,...,fk(R)
————————

R

Result

Figure 3.3: Grouping evaluation

For example, to find for each value of A1 the maximum value of A2, and the sum of the A3
values, we write the expression:

A1
γmax(A2), sum(A3) (R)

As in the generalized projection, attributes of a grouping operation can be renamed as follows:

A1
γmax(A2) AS M, sum(A3) AS S (R)

Logical Query Plan

To make a relational algebra expression more readable, it is usually represented as an expres-
sion tree of relational algebra operators, called a logical query plan or a query tree. For example,
the expression

πName(StudentNo, NameγAVG(Grade)
(σSubject = ’DA’ (Students ./

StudentNo = Candidate ExamResults)))

is represented as the logical query plan in Figure 3.4.

3.2.3 Equivalence rules

Two relational algebra expressions are said to be equivalent if, on every legal database instance,
the two expressions generate the same set of tuples. Note that the order of the tuples is
irrelevant.

An equivalence rule says that expressions of two forms are equivalent. A query optimizer
uses equivalence rules to transform expressions into other logically equivalent expressions.
We now present some of them.
1. Cascading of selections

σψX (σψY (E)) = σψX ∧ψY
(E)

3.2. Relational Algebra 29

πName

StudentNo, NameγAVG(Grade)

σSubject= ′DA ′

./
StudentNo = Candidate

Students ExamResults

Figure 3.4: Logical query plan

2. Commutativity of selection and projection

πY(σψX(E)) = σψX(πY(E))

if X ⊆ Y, otherwise

πY(σψX(E)) = πY(σψX(πXY(E)))

3. Commutativity of selection and join

σψX (E1 ./ E2) = σψX (E1) ./ E2

if X are attributes of E1.

σψX ∧ψY
(E1 ./ E2) = σψX(E1) ./ σψY (E2)

if X are attributes of E1 and Y are attributes of E2.

σψX ∧ψY ∧ψZ
(E1 ./ E2) = σψZ(σψX(E1) ./ σψY (E2))

if X are attributes of E1, Y are attributes of E2 and Z are attributes of both E1 and E2.

4. Cascading of projections

πZ(πY(E)) = πZ(E)

if Z ⊆ Y.

5. Commutativity of projection and join

πXY(E1 ./ E2) = πX(E1) ./ πY(E2)

where X are attributes of E1, Y are attributes of E2 and the join condition involves only
attributes in XY.
If the join condition involves attributes not in XY, then

πXY(E1 ./ E2) = πXY(πXXE1
(E1) ./ πYXE2

(E2))

3.2. Relational Algebra 30

where XE1 are attributes of E1 that are involved in the join condition, but are not in XY, and
XE2 are attributes of E2 that are involved in the join condition, but are not in XY.

6. Commutativity of join

E1 ./ E2 = E2 ./ E1

7. Associativity of join

(E1 ./ E2) ./ E3 = E1 ./ (E2 ./ E3)

8. Commutativity of set union and intersection

E1 ∪ E2 = E2 ∪ E1
E1 ∩ E2 = E2 ∩ E1
E1 − E2 6= E2 − E1

9. Associativity of set union and intersection

(E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)
(E1 ∩ E2) ∩ E3 = E1 ∩ (E2 ∩ E3)

10. Selection distributes over set operations

σφX(E1 − E2) = σφX (E1) − σφX(E2)

the equivalence holds with − replaced with either ∪ or ∩, while

σφX(E1 − E2) = σφX (E1) − E2

holds with − replaced by ∩, but does not hold if − is replaced by ∪.

11. Projection distributes over set operations

πX(E1 ∪ E2) =πX(E1) ∪ πX(E2)

12. Selection distributes over grouping

σX(YγF(E)) = YγF(σX(E))

if X uses only attributes from Y.

We now illustrate the use of the equivalence rules. The expression

πName(σφ (Students ./
StudentNo = Candidate ExamResults))

where φ = (City = ′Pisa ′ ∧ Grade = 30), can be represented as the initial query tree in Figure 3.5a,
and then it can can be represented also with the transformed query tree, taking into account
the previous equivalence rules.

3.2. Relational Algebra 31

πName

σCity= ′Pisa ′ ∧ Grade= 30

./
StudentNo = Candidate

Students ExamResults

(a) Initial query tree

πName

./
StudentNo = Candidate

πName, StudentNo

σCity= ′Pisa ′

Students

πCandidate

σGrade= 30

ExamResults

(b) Query tree after transformations

Figure 3.5: Expression trees

3.2.4 Exercises

1. Prove the following properties:
a) σφ∧ψ(E) = σφ(E)∩σψ(E);
b) πX(σφ(E)) = σφ(πX(E)), if φ uses only attributes in X;

c) σφ(E1
./
φJ

E2) = σφ(E1)
./
φJ

E2, if φ uses only attributes of E1;

d) σφ(AγF(E)) = AγF(σφ(E)), if φ uses only attributes in A.
2. Consider the following database schema (the attributes of the primary key are underlined

and those of the foreign key are marked with an asterisk)

Students(StudentNo, Name, City, BirthYear)
Exams(Subject, Candidate*, Grade, Date)

Write the logical query plan for the following queries:
a) Find the number of students who have passed the DA exam with grade 30.
b) Find the name and the student number of students who have passed 3 exams.
c) Find the name and the student number of students who have passed some exam.
d) Find the name and the student number of students who have not passed some exam.
e) Find the names of the students of Pisa who have done some exam and the number of

exams taken, sorted by number of exams.

3.3. Relational Database Design: ODM-to-Relational Mapping 32

3.3 Relational Database Design: ODM-to-Relational Mapping

The growing use of DBMSs, the complexity of the new applications, and the need to imple-
ment database applications that can be readily adapted to changes in user requirements, have
all led to an increasing demand for environments with integrated sets of automated tools to
support both the design and the maintenance of database applications. The problem is similar
to that of software engineering and the following strategies have been adopted: a) the defini-
tion of a design methodology composed of a set of structured steps in which design decisions
are considered one at a time to achieve a satisfactory result; b) the definition of techniques
to be used during the design steps; c) the definition of tools for an automated development
support system.

The aim of a design methodology is to transform a user-oriented linguistic representation of
the information needs of an organization into a DBMS-oriented description. There is a general
consensus among researchers and practitioners on the static and dynamic aspects that should
be modeled during the design process. Static aspects regard the data structures and integrity
constraints, while dynamic aspects concern the transactions modifying the database from one
consistent state to another. We shall consider here only the static aspects.

Different phases of design have been suggested to cope with the complexity of the database
design process. User requirements analysis and specification consists of collecting user needs and
normalizing them according to established standards. Conceptual design is the phase in which
requirements are formalized and integrated into a global conceptual schema, using a DBMS-
independent conceptual language. In the next phase, logical design, the conceptual schema is
mapped into a logical schema using the data model supported by the DBMS chosen for the
implementation. Finally, physical design concerns the selection of the data structures used to
store and retrieve the data.

When a relational DBMS is used, in the logical design phase the designer can benefit from a
well-developed theory, called normalization theory, which provides algorithms to produce a set
of relation schemas with certain desirable properties, and in particular to avoid certain “bad”
design decisions, both with respect to semantics and to performance.

In this section the steps of an algorithm are described to design a relational schema from a
conceptual schema. For simplicity it is assumed that the primary key of the tables consist of
one attribute.

STEP 1: Representation of 1:N and 1:1 associations with the rules in Figure 3.6.

STEP 2: Representation of N:M associations with the rules in Figure 3.7.

STEP 3: Representation of class hierarchies with the rules in Figure 3.8. For simplicity we
assume that the subclasses are disjoint and that the class attributes are not redefined in
subclasses. Three main options are possible:
1. A single relation with the attributes of the class and subclasses, and a special attribute

Discriminatory to discriminate to which subclass a tuple belong, if any. The XB, XC
attributes can take on a particular value with the meaning of unknown value.

2. A relation for the class and a relation for each subclass (vertical partitioning). The relation
for the class contains the class elements and the elements of the subclasses.

3. A relation for the class and a relation for each subclass which include the class attributes
too (horizontal partitioning). The relation for the class contains the class elements which
do not belong to the subclasses. If the subclasses are a non overlapping cover, the class A
is not defined because it is empty.

3.3. Relational Database Design: ODM-to-Relational Mapping 33

A
Attributes

B
Attributes

R A
Attributes
R �FK(B)�

B
Attributes

R

A
Attributes

B
Attributi

R
Attributes

A
Attributes
R �FK(B)�
RAttributes

B
Attributes

R

A
Attributes

B
Attributes

R
A

Attributes

R

A �PK��FK(A)�
B �FK(B)�

B
Attributes

A B

A
Attributes
R �FK(B)�

B
Attributes

R

A
Attributes

B
Attributes

R
Attributes

A
Attributes

R

A �PK��FK(A)�
B �FK(B)�
RAttributes

B
Attributes

BA

A
Attributes
R �FK(B)�
RAttributes

B
Attributes

R

A
Attributes

A1

A2
R

A
Attributes

R

A1 �FK(A)�
A2 �PK��FK(A)�

A1 A2

A
Attributes
A1 �FK(A)�

A1

A
Attributes

B
Attributes

R A
Attributes
R �FK(B)�

B
Attributes

R

A
Attributes

B
Attributes

R
A

Attributes

R

A �PK1��FK(A)�
B �PK2��FK(B)�

B
Attributes

A B

A
Attributes
R �FK(B)�

B
Attributes

R

ODM associations Relational representation of ODM associations

Figure 3.6: Rules for STEP 1

A
Attributes

B
Attributes

R
A

Attributes

R

A �PK��FK(A)�
B �PK��FK(B)�

B
Attributes

BA

A
Attributes

B
Attributes

R
Attributes

A
Attributes

R

A �PK��FK(A)�
B �PK��FK(B)�
RAttributes

B
Attributes

BA

A
Attributes

A1

A2
R

A
Attributes

R

A1 �PK��FK(A)�
A2 �PK��FK(A)�

A1 A2

ODM associations Relational representation of ODM associations

Figure 3.7: Rules for STEP 2

3.3. Relational Database Design: ODM-to-Relational Mapping 34

A
KA �K�
XA

B
XB

C

XC

R S

T W

ODM with subclasses

A
KA �PK�
XA
XB
XC
R �FK(. . .)�
W �FK(. . .)�
Discriminatore

R

T

S

W

Relational representation of ODM
by single relation

A
KA �PK�
XA
R �FK(. . .)�

B
KA �PK�
�FK(A)�

XB

C

KA �PK�
�FK(A)�

XC
W �FK(. . .)�

R S

T
W

KA KA

Relational representation of ODM
by vertical partitioning

A
KA �PK�
XA
R �FK(. . .)�

B
KA �PK�
XA
XB
R �FK(. . .)�

C

KA �PK�
XA
XC
R �FK(. . .)�
W �FK(. . .)�

R S (?)

T

R
WR

Relational representation of ODM
by horizontal partitioning

Figure 3.8: Rules for STEP 3

STEP 4: Define the primary key for each relation representing a class of the conceptual
schema. For each relation representing a subclass, the primary key is that selected for
the superclass.

STEP 5: Representation of multi-valued attributes. If a class C has a multi-valued attribute A
(for example Borrowers with the attribute Phones), the attribute is eliminated from C and a
new relation N is defined with a key of two attributes: a foreign key referencing the primary
key of C and an attribute that matches the multi-valued attribute to be transformed. An
element of C with primary key k ed in which the attribute takes the value a1, . . . ,an is then
represented inserting in N the pairs (k,a1), . . . ,(k,an).

STEP 6: Representation of composite attributes. If an attribute A is a record with fields Ai, A
is replaced by the Ai.

Example 3.3
The applications of the above steps to the conceptual schema in Figure 2.8 (shown below)
produces the initial relational schema in Figure 3.9 and the final one in Figure 3.10.

Since the primary key of the relation Books consists of more than one attribute, to
simplify the definitions of the relations Loanable, Consultable, ForConsultation, and Regulars
we add to Books a surrogate key of one attribute with integer values.

3.3. Relational Database Design: ODM-to-Relational Mapping 35

Borrowers

SSN :int �K�
Name :string
Address :string
Phones :seq string

Authors

SSN :int �K�
Name :string
Nationality :string
BirthDate :date

Terms

Term :string �K�

Bibliographic
Descriptions

ISBN :string �K�
Title :string
Publisher :string
Year :int

Loans

Date :date
DueDate :date

Books

Position :string �K�
CopyNumber :int �K�

Students

StudentNo :int �K�
UniversityStaff

OfficePhone :string

Loanable Consultable

ForDays :int

RegularsForConsultation

Use

UsedFor

UseFor

BroaderTerm

UseAlso

NarrowerTerm

TakenBy Concerns

Concerns

LoanedBy

Indexes

AppearsIn

DescribedBy

Borrowers

Phones

Authors

Terms

BroaderTerm

Use

Indexes
Bibliographic
Descriptions

AppearsIn Books

Loanable Consultable

RegularLoans

ForConsultationLoansStudents UniversityStaff

Term

Bibliography

Borrower

Author

Bibliography
DescribedBy

Borrower Borrower

Book Book

LoanedBy

Concerns

TakenBy

Concerns

Figure 3.9: An initial relational schema for a library

3.3. Relational Database Design: ODM-to-Relational Mapping 36

Borrowers

SSN :int �PK�
Name :string
Address :string

Phones

PhoneNo :string �PK�
Borrower :int �PK�

�FK(Borrowers)�

Authors

SSN :int �PK�
Name :string
Nationality :string
BirthDate :date

Terms

Term :string �PK�
BroaderTerm :string

�FK(Terms)�
Use :string

�FK(Terms)�

BroaderTerm

Use

Indexes

Term :string �PK�
�FK(Terms)�

Bibliography :string �PK�
�FK(Bibliographic

Descriptions)�

Bibliographic
Descriptions

ISBN :string �PK�
Title :string
Publisher :string
Year :int

AppearsIn

Author :int �PK�
�FK(Authors)

Bibliography :string �PK�
�FK(Bibliographic

Descriptions)� Books

SurrogateK :int �PK�
Position :string �CK�
CopyNumber :int �CK�
DescribedBy :string

�FK(Bibliographic
Descriptions)�

Students

Borrower :int �PK�
�FK(Borrowers)�

StudentNo :int �CK�

Borrower

UniversityStaff

Borrower :int �PK�
�FK(Borrowers)�

OfficePhone :string

Borrower

Consultable

Book :int �PK�
�FK(Books)�

ForDays :int

Loanable

Book :int �PK�
�FK(Books)�

RegularLoans

Concerns :int �PK� �FK(Loanable)�
LoanedBy :int �FK(Borrowers)�
Date :date
DueDate :date

ForConsultationLoans

Concerns :int �PK� �FK(Consultable)�
TakenBy :int �FK(UniversityStaff)�
Date :date
DueDate :date

BookBook

Term Bibliography

Borrower

Author

Bibliography DescribedBy

Concerns

Concerns

TakenBy

LoanedBy

Figure 3.10: The final relational schema for a library

3.3.1 Exercises

1. Convert the following conceptual schemas to a relational database schema.
(a) The solution to Exercise 2.4.7(3).
(b) The solution to Exercise 2.4.7(4).
(c) The solution to Exercise 2.4.7(5).

3.4. Relational Database Design: Normalization Theory 37

3.4 Relational Database Design: Normalization Theory

In this section, we shall show how normalization theory can be applied directly following an
approach to relational database design which is based on analyzing an application in terms
of its elementary facts and the functional relationships among them, and then synthesizing a
“good” set of relation schemas.

To show in which sense a relation schema can be considered “bad”, let us assume that
we are interested in representing certain information in a simplified library administration
system, and we have decided to represent it in one relation with the following schema:

Library(UserName, Address, Tel, CallNumber, Author, Title, Date)

The library has a set of books (not more than one copy per book), each identified by a unique
book number (CallNumber). Books may be loaned to borrowers, each identified by a unique
name, and having an address and telephone number; a library user can have more than one
book on loan at the same time; the lending date is also recorded. Let’s assume that the key of
the relation is {UserName, CallNumber}. An example of an instance of the relation is:

UserName Address Tel CallNumber Author Title LendingDate

Rossi Carlo Carrara 75444 XY188A Boccaccio Decameron 10/07/83
Paolicchi Luca Avenza 59729 XY256B Verga Novelle 15/08/83
Pastine Maurizio Dogana 61338 XY090C Petrarca Canzoniere 20/01/84
Paolicchi Laura Avenza 59729 XY101A Dante Vita Nova 30/03/84
Paolicchi Luca Avenza 59729 XY701B Manzoni Adelchi 14/05/84
Paolicchi Luca Avenza 59729 XY008C Moravia La noia 17/09/84

The above schema is “bad” because it presents the following main undesirable properties:
- Repetition of information. Every time a user borrows another book, the information about

his address and telephone will be repeated; this wastes space and complicates database
updating when a user changes address.

- Inability to represent certain information. Information about users can be stored only when
they borrow a book.

An alternative design is to replace the schema with two relation schemas, but a careless de-
composition may lead to another kind of “bad” design. Consider the following rather absurd
decomposition where the association between loans and borrowers is modeled by the tele-
phone numbers:

Users(UserName, Address, Tel)
Loans (CallNumber, Author, Title, LendingDate, Tel)

The instances of the two relations are obtained by projections of the Library relation as follows:
Users = πUserName, Address, Tel(Library) =

UserName Address Tel

Rossi Carlo Carrara 75444
Paolicchi Luca Avenza 59729
Pastine Maurizio Dogana 61338
Paolicchi Laura Avenza 59729

3.4. Relational Database Design: Normalization Theory 38

Loans = πCallNumber, Author, Title, LendingDate, Tel(Library) =

CallNumber Author Title LendingDate Tel

XY188A Boccaccio Decameron 10/07/83 75444
XY256B Verga Novelle 15/08/83 59729
XY090C Petrarca Canzoniere 20/01/84 61338
XY101A Dante Vita Nova 30/03/84 59729
XY701B Manzoni Adelchi 14/05/84 59729
XY008C Moravia La Noia 17/09/84 59729

This decomposition eliminates data duplications, but presents another anomaly when we need
to reconstruct the Library relation. For example, suppose that we wish to send a letter to solicit
users to return books borrowed in May 1984. To obtain the required information, the following
query can be formulated:

πUserName, Address(Users ./ (σLendingDate ∈ (01/05/84, 31/05/84)(Loans)))

The result is

UserName Address

Paolicchi Luca Avenza
Paolicchi Laura Avenza

which is wrong since Paolicchi Laura has not borrowed a book in May 1984. Thus, when we
join Users and Loans we have more tuples in the result than those we expect. This anomaly is
called a loss of information and the decomposition is called a lossy decomposition. The reason for
this anomaly is that we have selected a wrong foreign key to describe the association of users
and loans. A correct design would have been

Users(UserName, Address, Tel)
Loans(CallNumber, Author, Title, LendingDate, UserName*)

The main goal of relational design theory is to give formal criteria to design databases without
anomalies of the types represented by the above examples.

In the following, we will assume that attributes have a global meaning, i.e. attributes mean
the same wherever they occur in a database schema, and we adopt the following conventions:

- Capital letters near the beginning of the alphabet stand for single attributes (A,B,A1,
A2, etc.).

- Capital letters near the end of the alphabet stand for sets of attributes (X, Y,U,Z, etc.).
- XY is used as a shorthand for X ∪ Y, AB as a shorthand for {A,B}, and AX as a shorthand

for {A}∪X.
- A1A2 . . .An is a shorthand for {A1,A2, . . . ,An}.
- Names beginning with a capital letter denote relation schemas, and R(T) a relation with a

set of attributes T .
- Let t be a tuple, R(T) a relation schema, and X ⊆ T , then t[X] denotes the X-value of t.

3.4. Relational Database Design: Normalization Theory 39

3.4.1 Functional Dependencies

In order to formalize the notion of schema without anomalies, we need a formal description
of the semantics of the facts stored in a relation. Codd [Codd, 1970] proposed a particular
kind of formalism based on the notion of functional dependency.

� Definition 3.4
Given a relation schema R(T) and X, Y ⊆ T , a functional dependency (FD) is a constraint
on R of the form X→ Y, i.e. X functionally determines Y or Y is determined by X, if for any
legal instance r of R a value of X uniquely determines a value of Y

∀t1, t2 ∈ r such that t1[X] = t2[X] implies t1[Y] = t2[Y]. (3.1)

We say that an instance r of R satisfies the FD X → Y if condition (3.1) holds, and that an
instance r of R satisfies a set F of FD if, for each X→ Y ∈ F, condition (3.1) holds.

Condition (3.1) formally expresses the following constraint: in any legal instance r of R, if
two tuples have the same X value, then they will also have the same Y value. These kinds of
constraints depend on the semantics of the represented facts and consequently must be true
for any legal instance r of R; we cannot look at a particular instance of R and deduce what
functional dependencies hold for R. Functional dependencies might be enforced by a DBMS
if this is specified by the database designer, but relational systems usually enforce only those
functional dependencies that follow from the fact that a key determines the other attributes
of a relation. Since functional dependencies are an important aspect in database design, in the
following we will use the convention that R〈T , F〉 denotes a schema with a set T of attributes
and a set F of functional dependencies over T .

Let us consider a legal instance r of R〈T , F〉, with F = {X → Y,X → Z}, X, Y,Z ⊆ T , and
W ⊆ X. Many other functional dependencies are satisfied by r including, for example, X→W
and X → YZ. In fact, in the first case, if two tuples have the same value on X, they will
certainly have the same value on W which is a subset of X (trivial FD); in the second case
if t1[X] = t2[X], since t1, t2 satisfy the FDs in F, it is also the case that t1[Y] = t2[Y] and
t1[Z] = t2[Z], and consequently t1[YZ] = t2[YZ].

Thus, given a set F of FDs, other FDs will generally be ‘implied’ by this set in the following
sense:

� Definition 3.5
Given a set F of FDs on a schema R, we say that F |= X→ Y, i.e. F logically implies X→ Y,
if every instance r of R that satisfies F also satisfies X→ Y.

From this definition, the previous example has shown that

{X→ Y,X→ Z} |= X→ YZ
and
W ⊆ X {} |= X→W

An interesting question is whether there is a way of computing all the possible FDs logically
implied by a set F, using a set of inference rules with the property of being sound and complete
so that we can derive all the FDs implied by F, and only those.

3.4. Relational Database Design: Normalization Theory 40

3.4.2 Inference Rules

A set of inference rule to derive new FDs from a given set F are the Armstrong’s axioms3:

F1 (reflexivity) If Y ⊆ X, then X→ Y
F2 (augmentation) If X→ Y, Z ⊆ T , then XZ→ YZ
F3 (transitivity) If X→ Y, Y → Z, then X→ Z

� Definition 3.6
F ` X → Y iff X → Y can be inferred from F using Armstrong’s axioms as inference
rules.

Using these rules, the following rules can also be proved correct

{X→ Y,X→ Z} ` X→ YZ (union rule)
Z ⊆ Y {X→ Y} ` X→ Z(decomposition rule)
{} ` X→ X
Z ⊆ Y{X→ Y} ` XZ→ Y
W ⊆ Z,V ⊆ Y {X→ Y} ` XZ→ VW

So far, we have discussed derived dependencies in two ways: we have talked about logically
implied dependencies (|=) and about dependencies which are inferred using Armstrong’s
axioms as deduction rules (`). In fact, these two ways of defining derived dependencies are
the same: if a functional dependency f can be inferred from a set F using Armstrong’s axioms,
then f is logically implied by F (soundness), and, vice versa, if f is logically implied by F, then
f can also be inferred using Armstrong’s axioms (completeness).

� Theorem 3.1
Armstrong’s axioms are sound and complete.

A consequence of this theorem is that we can substitute |= with ` and vice versa in all the
previous results.

3.4.3 Closure of a Set of FDs

� Definition 3.7
Given a set F of FDs, the closure of F, denoted by F+, is:

F+ = {X→ Y | F ` X→ Y}

Therefore, to test whether an FD V → W is in F+ (the implication problem) we can generate all
the FDs in F+, which is a finite set, by applying Armstrong’s axioms repeatedly. This way of
solving the implication problem is generally found time-consuming, simply because the set
of dependencies in F+ can be large even when F itself is small. Consider the set F = {A →
B1, . . . ,A → Bn}, then F+ will includes all the dependencies A → Y, where Y is a subset of
{B1, . . . ,Bn} and there are 2n of sets Y.

3. There are several equivalent sets of rules and we present just one of them here.

3.4. Relational Database Design: Normalization Theory 41

A simpler way of solving the implication problem follows from the following notion of
closure of a set of attributes and theorem.

� Definition 3.8
Given a schema R〈T , F〉, and X ⊆ T , the closure of X, denoted by X+, is
X+ = {A ∈ T | F ` X→ A}.

� Theorem 3.2
F ` X→ Y iff Y ⊆ X+.

Instead of computing F+, compute X+ and then test whether Y ⊆ X+. The following simple
algorithm can be used to compute X+.

� Algorithm 3.1 Computing the Closure of an Attribute Set X

X+ = X
while (changes to X+) do

for each W → V in F with W ⊆ X+ and V 6⊆ X+

do X+ = X+ ∪ V ;

It turns out that in the worst case this algorithm has time complexity O(apmin{a,p}), where a
is the number of attributes and p the number of FDs. A faster algorithm, with time complexity
O(ap), has been given by [Beeri and Bernstein, 1979].4

Using the notions of functional dependency and closure of sets of dependencies, we can
formally define the concept of key of a relation.

� Definition 3.9
Given the schema R〈T , F〉, we say that W ⊆ T is a key (or a candidate key) of R if

1. W → T ∈ F+
2. ∀V ⊂W,V → T 6∈ F+

In general, there are many candidate keys for a relation, and we designate one of them as
the primary key to be used in representing associations. We also use the term superkey for any
superset of a key and the term prime attribute for an attribute which belongs to a candidate
key. The following results have been proved for keys:
1. The problem of finding all the keys of a relation requires an algorithm with an exponential

time complexity.
2. The problem of testing whether an attribute is prime is NP-complete.

Example 3.4
Given a relational schema R〈T , F〉, to find all the candidate keys of R is simple when the
following properties hold:

4. For an example see the application implemented by R. Orsini available at this URL:http://dblab.dsi.unive.it:8080

3.4. Relational Database Design: Normalization Theory 42

1. If an attribute A of T does not appear on the right-hand side of some FDs, then A
must be in any candidate key of R (see Exercise 1).

2. If an attribute A of T appears on the right-hand side of some FDs, but it does not
appear on the left-hand side of some non trivial FDs, then A is not in any candidate
key of R.

Let X a set of attributes which do not appear on the right-hand side of some FDs. Ac-
cording to property (1), if X+ = T , then X is the only candidate key for R.

For example, let R〈T , F〉 a schema with T = {A,B,C,D,E,G} and F = {BC → AD, D → E,
CG → B}. C and G do not appear on the right-hand side of some FDs, therefore they
must be in any candidate key of R. Since CG+ = T , CG is the only candidate key of R.

Instead, if X+ 6= T , then we must add other attributes to X. According to property (2),
we consider only attributes W of T which appear both on the right-hand side and on
the left-hand side of some FDs. At every step we must avoid adding attributes that are
already in the closure of X, since these attributes are clearly redundant, or attributes that
produce a set X ′ that contains a key found earlier. Then we calculate the closure of each
X ′, until it is different from T . At the end of the process X ′ = T , and so X ′ is a candidate
key.

For example, let R〈T , F〉 a schema with T = {A,B,C,D,E,G} and F = {AB→ C, BC→ AD,
D → E, CG → B}. G does not appear on the right-hand side of some FDs, but G+ = G.
Let us add attributes from W = {A,B,C,D} to G and compute their closure to find all
candidate keys:

GA+ = GA 6= T .
GB+ = GB 6= T .
GC+ = T . GC is a candidate key of R.
GD+ = GDE 6= T .

Let us add now attributes from W to GA, GB and GD, considering only sets of attributes
that do not contain the key GC:

GAB+ = T . GAB is a candidate key of R.
GAD+ = GADE 6= T .
GBD+ = GBDE 6= T .

Finally, we try to add another attribute from W to GAD and GBD, but we find that there
are not sets of attributes that do not contain the keys GC and GAB, therefore we conclude
that there are no other candidate keys.

3.4.4 Covers of Sets of Dependencies

Let F and G be sets of dependencies on the same attributes. Using the notion of closure we
can determine when two sets of dependencies are equivalent and thus when two schemas on
the same attributes represent the same information.

3.4. Relational Database Design: Normalization Theory 43

� Definition 3.10
Two sets of FDs, F and G, over schema R are equivalent, written F ≡ G, iff F+ = G+. If
F ≡ G, then F is a cover for G (and G a cover for F).

It is easy to test whether F and G are equivalent: test if every dependency in F is in G+, and
every dependency in G is in F+.

It is useful to have a cover for a given set of FDs which is easy to deal with and which has
simple and important properties. An example is given in the following definition.

� Definition 3.11
Let F be a set of FDs
1. Given X→ Y ∈ F, we say that X contains an extraneous attribute Ai iff X− {Ai}→ Y ∈
F+;

2. X→ Y is a redundant dependency iff X→ Y ∈ (F− {X→ Y})+;
3. F is called a canonical cover iff

- every right side of a dependency in F is a single attribute;
- no attribute on any left side is extraneous;
- no dependency in F is redundant.

� Theorem 3.3
Every set of dependencies F is equivalent to a set F ′ that is a canonical cover.

The following example shows that in general a set F of FDs can have more than one canonical
cover.

Example 3.5
For the set F = {AB → C,A → B,B → A} both {A → C,A → B,B → A} and {B → C,A →
B,B→ A} are canonical covers.

An algorithm to compute a canonical cover based on definition 3.10 has time complexity
O(a2p2).

3.4.5 Schema Decomposition

It has been shown that in order to eliminate anomalies from a bad schema, the schema must
be decomposed into smaller schemas. Let us define formally the notion of a decomposition
and its desirable properties.

� Definition 3.12
A decomposition of a schema R(T) is the substitution of R(T) with a set ρ = {R1, . . . ,Rk}
of schemas Ri(Ti) such that ∪Ti = T .

There are two desirable properties of a decomposition, data preserving (lossless join) and depen-
dency preserving.

3.4. Relational Database Design: Normalization Theory 44

Data Preserving Decomposition

� Definition 3.13
Given a schema R〈T , F〉, the decomposition ρ = {R1, . . . ,Rk} is data preserving if for
every legal instance r of R:

r = (πT1
(r)) ./ (πT2

(r)) ./ · · · ./ (πTk(r))

That is, every legal instance r is the natural join of its projections onto the Ri’s. From the
definition of the natural join operator, the following result can be proved.

� Theorem 3.4
Let R〈T , F〉 be a relation schema, ρ = {R1, . . . ,Rk} be any decomposition of R, and r any
legal instance of R. Then:

r ⊆ (πT1
(r)) ./ (πT2

(r)) ./ · · · ./ (πTk(r))

This theorem clarifies the notion of loss of information: in general a relation is not recoverable
from its decomposition, as it is shown by the following example.

Example 3.6
Let us consider the following instance r of the relation R(A,B,C):

A B C

a1 b c1
a2 b c2

The following decomposition is not data preserving because
r ⊂ (πA,B(r)) ./ (πB,C(r)).

πA, B (r) = A B

a1 b
a2 b

πB,C (r) = B C

b c1
b c2

Since it is desirable for a decomposition to be data preserving, the following theorem gives a
condition which can be used to establish when this property holds.

� Theorem 3.5
Let R〈T , F〉 be a relation schema, the decomposition ρ = {R1,R2} is data preserving iff
T1 ∩ T2 → T1 ∈ F+ or T1 ∩ T2 → T2 ∈ F+.

This result has been extended by providing an algorithm to test whether a decomposition in
more than two smaller relations is data preserving.

3.4. Relational Database Design: Normalization Theory 45

3.4.6 Dependency Preserving Decomposition

� Definition 3.14
Given the schema R〈T , F〉, and Ti ⊆ T , the projection of F onto Ti is

πTi(F) = {X→ Y ∈ F+ | X, Y ⊆ Ti}

� Proposition 3.1
Given a schema R〈T , F〉, and X ⊆ T , the problem of finding a canonical cover of the
projection of F on X is NP-complete.

The following simple algorithm can be used to compute πTi(F).

� Algorithm 3.2 Projection of F onto Ti
input R〈T , F〉 and Ti ⊆ T
output A cover of the projection of F onto Ti

begin
for each Y ⊂ Ti do

begin
Z := Y+F − Y;
return Y → (Z∩ Ti)

end
end

� Definition 3.15
Given a schema R〈T , F〉, the decomposition ρ = {R1, . . . ,Rn} is dependency preserving
iff ∪πTi(F) ≡ F.

A trivial algorithm for testing whether a decomposition ρ = {R1, . . . ,Rn} preserves a set of de-
pendencies F is to compute the projections of F onto the attributes Ti, take the union ∪Ti, and
test whether this set is equivalent to F. This algorithm will have an exponential time complex-
ity. However a faster algorithm exist which does not require the computation of the projections
of F onto the attributes Ti, and takes time that is polynomial in the size of F [Ullman, 1989].

The reason why it is desirable for a decomposition to preserve a set of dependencies F is that
the dependencies in F are integrity constraints for the relation R. If the projected dependencies
did not imply F, then every update to one of the Ri’s would require a join to check that the
constraints were not violated.

The data preserving and dependency preserving properties of a decomposition are inde-
pendent, i.e. there exist lossless decompositions which do not preserve dependencies and vice
versa. The following result relates the two properties and gives a sufficient but not necessary
condition to establish if a dependency preserving decomposition is data preserving.

� Definition 3.16
Given a schema R〈T , F〉 and a dependency preserving decomposition ρ = {Ri〈Ti, Fi〉}
such that a Tj is a superkey for R〈T , F〉, then ρ is data preserving.

3.4. Relational Database Design: Normalization Theory 46

3.4.7 Normalization Using Functional Dependencies

We now examine how functional dependencies can be used to define several normal forms
which represent “good” database design. The most important are the third normal form (3NF)
and the Boyce-Codd normal form (BCNF).

� Definition 3.17
R〈T , F〉 is in 3NF if, when X→ A ∈ F+, and A 6∈ X, then X includes a key or A is prime.

Example 3.7
A schema which is not in 3NF is

Employees(#Employee, NameOfEmployee, NameOfDept, InformationOnDept)
#Employee→ NameOfEmployee NameOfDept InformationOnDept
NameOfDept→ InformationOnDept

The relation Employees is not in a desirable form since there is a repetition of information:
if there are several employees working in the same department, then we are forced to
repeat the information on the department for each employee.

If F is a canonical cover, then the following result holds

� Proposition 3.2
R〈T , F〉 is in 3NF if, when X→ A ∈ F, X is a key or A is prime.

Since, for both the definitions, we need to know if an attribute is prime in order to test whether
a relation schema is in 3NF, we will have the following result.

� Proposition 3.3
The problem of deciding whether a relation schema R〈T , F〉 is in 3NF is NP-complete.

Example 3.8
Let us consider the following schema ZipCodes(City, Street, Zip), with FDs

City Street→ Zip
Zip→ City

That is, the address (city and street) determines the zip code, and the zip code determines
the city, although not the street address. Since the candidate keys are {City, Street}, {Street,
Zip}, all attributes are primes, and thus the schema is in 3NF, but it suffers from the
repetition of information problem. Consequently, 3NF does not solve the problem of
detecting “bad” schemas completely and another normal form is required.

3.4. Relational Database Design: Normalization Theory 47

� Definition 3.18
R〈T , F〉 is in BCNF if, when X→ A ∈ F+, and A 6∈ X, then X is a superkey.

The schema ZipCodes(City, Street, Zip) from Example 3.8 is a well known example showing
that a relation schema can be in 3NF without being in BCNF. If F is a canonical cover, then the
following result holds

� Proposition 3.4
R〈T , F〉 is in BCNF if, when X→ A ∈ F, X is a key.

From this definition, it follows that an algorithm to test whether a single relation schema is in
BCNF has a complexity O(ap2).

� Proposition 3.5
Given a schema R〈T , F〉, X ⊆ T , and F ′ the projection of F onto X, the problem of deciding
if R ′〈X, F ′〉 is in BCNF is NP-complete.

3.4.8 Polynomial Algorithms to Normalize in 3NF and BCNF

A Synthesis Algorithm for 3NF
The best known synthesis algorithm was proposed by Bernstein [Bernstein, 1976]. The basic
steps are the followings:

STEP 1: A canonical cover G of the FDs is computed.

STEP 2: G is partitioned into groups Gi such that all the FDs in each Gi will have the same
left-hand side and no two groups will have the same left-hand side.

STEP 3: Each Gi produces a 3NF relation schema composed of all the attributes in Gi.

The algorithm will obviously provide a dependency preserving decomposition.
However, in order to avoid the synthesis of superfluous schemas, this basic algorithm must

be extended, as shown in the following example.

Example 3.9
Let F = {A → B,B → A,C → D,D → C}; F is a canonical cover and the basic algorithm
generates the following schemas: R1(A,B), R2(A,B), R3(C,D), and R4(C,D), while two
relations are sufficient, R1(A,B) and R3(C,D).

The extension of the basic algorithm is reported in Bernstein [Bernstein, 1976] where it is also
shown that its complexity is O(a2p2). In [Biskup et al., 1979], the following step has been
added to the algorithm to produce a set of relation schemas in 3NF that has both the data and
dependency preservation properties.

3.4. Relational Database Design: Normalization Theory 48

STEP 4: If the final set of relation schemas does not include a relation whose attributes are a
superkey of the relation R which contains all the attributes in the initial FDs, which are the
inputs to the synthesis algorithm, a relation schema is added with attributes W, where W
is a key of R.

As a consequence of this result, we have that it is faster to produce a set of relation schemas
in 3NF, than to test whether a single relation schema is already in 3NF.

As there is no synthesis algorithm which can be used to produce a relation schema in BCNF,
another approach must be used.

A Decomposition Algorithm for BCNF
The goal of a decomposition algorithm is to convert a relation schema which is not in BCNF
into a set of relations: If R(X, Y,Z) is not in BCNF because of X → Y, R is decomposed into:
R1(X, Y) and R2(X,Z). The process continues as long as the Ri are not in BCNF. Therefore a
decomposition algorithm is the following.

� Algorithm 3.3 A Decomposition Algorithm for BCNF

ρ := {R1〈T1, F1〉}; n := 1;
while exists in ρ a Ri〈Ti, Fi〉 not in BCNF because of the FD X→ A do

n := n+ 1;
T ′ := XA;
F ′ := π

T ′(Fi);
T ′′ := Ti −A;
F ′′ := π

T ′′(Fi);
ρ := ρ− Ri〈Ti, Fi〉+ {Ri〈T ′, F ′〉,Rn〈T ′′, F ′′〉}

end

The decomposition is data preserving but, in general, not dependency preserving, as shown
by the following example: R〈{J,K,L}, {JK → L,L → K}〉 is not in BCNF, however every de-
composition will fail to preserve JK → L. Thus, obtaining a data and dependency preserving
decomposition is an impossible goal.

[Tsou and Fischer, 1982] gave an algorithm with a polynomial time complexity O(a5p) to
compute a data preserving decomposition in BCNF, although it will sometimes decompose a
relation that is already in BCNF. However, the problem of deciding whether a relation schema
has a dependency preserving decomposition in BCNF is NP-hard.

3.4.9 Multivalued Dependencies and Fourth Normal Form

We have introduced the concepts of functional dependency, 3NF, and BCNF normal forms
to avoid schemas with anomalies. Unfortunately, 3NF and BCNF are insufficient to solve the
problem. For example, the relation

Employees(EmplName, ChildName, Salary, Year),

used to store information about the children and salary histories of employees, is in BCNF
(there are no FDs), however there is a lot of data redundancy.

3.4. Relational Database Design: Normalization Theory 49

Employees

EmplName ChildName Salary Year

Bragazzi Maurizio 1000000 1980
Bragazzi Maurizio 1200000 1984
Bragazzi Maurizio 1400000 1988
Bragazzi Marcello 1000000 1980
Bragazzi Marcello 1200000 1984
Bragazzi Marcello 1400000 1988
Fantini Maria 1000000 1980
Fantini Maria 800000 1984
Fantini Maria 600000 1988

Informally, data redundancy occurs whenever a multivalued property is represented in a rela-
tion schema together with another simple or multivalued independent property. An example
is when we attempt to represent the children and salary histories properties for employees. If
we had represented only one of these properties in a relation, we would not have had this a
problem:

EmployeeSalaries(EmplName, Salary, Year)
EmployeeChildren(EmplName*, ChildName)

To deal with this redundancy, the concept of multivalued dependencies (MVDs) has been intro-
duced and a new normal form has been defined, a generalization of a Boyce-Codd normal
form, called fourth normal form (4NF), that applies to relation schemas with functional and
multivalued dependencies.

A relation that is not in 4NF can be decomposed in much the same way as we constructed
BCNF database schemas. The resulting decomposition is data preserving. However, in general,
it is not possible to design a database schema that meets the three criteria: 4NF, dependency
preservation, and data preservation. Moreover, it is not known how (or if) a synthesis algo-
rithm can handle MVDs.

Other kinds of dependencies have been defined to avoid other forms of data redundancy in
a relation schema. The interested reader may consult [Maier, 1983] for a fuller discussion of
dependency theory, including other topics which have not been addressed here.

3.4.10 Exercises

1. Prove that for a schema R〈T , F〉, with F a canonical cover, if an attribute Ai does not appear
on the right side of any FD, then Ai belongs to every key of R.

2. Prove that if a schema R〈T , F〉 has two attributes only, then it is in BCNF.
3. Prove that if a schema R〈T , F〉 is in 3NF, and all keys are made of one attributes, then it is

in BCNF. Hint: prove that for each X→ A ∈ F, X is a superkey.
4. For each of the following relational schemas R〈T , F〉, with F a canonical cover:

(a) R(A,B,C,D) with functional dependencies A→ B, and A→ C.
(b) R(A,B,C,D) with functional dependencies AB→ C, C→ D, and D→ A.
(c) R(A,B,C,D,E, F) with functional dependencies A→ C, DE→ F, B→ D.
(d) R(A,B,C,D,E) with functional dependencies AD→ B, CB→ A, DE→ A, A→ E.
do the following:

3.4. Relational Database Design: Normalization Theory 50

(a) Find all the keys of R,
(b) Indicate all the BCNF violations.
(c) Decompose the relations, as necessary, into collections of relations that are in BCNF. Say

if the decomposition is dependency preserving.
(d) Indicate all the 3NF violations.
(e) If the relation is not in 3FN, decompose it into collections of relations that are in 3NF

and are data preserving.

Part II

DBMS: The User’s Perspective

51

Chapter 4

OBJECTIVES OF A DBMS

4.1 Introduction

The most common class of computer applications is used to store, maintain, and retrieve large
quantities of persistent data, i.e. data that are required to last longer than the duration of the
execution of the programs using them. All computerized information systems, whether in a
public or private environment, fall into this class.

During the 1950s and most of the 1960s, these kinds of applications were developed using
programming languages with files, collections of homogeneous records with the property of
persistency. The responsibility for organizing and maintaining data rested entirely on the
application programmers. The logical and physical structure of the data was described in the
programs and the code to manipulate the data was dependent on these structures. In addition,
this coupling of programs and data tended to make files specific to individual applications,
precluding the sharing of common data among related applications. Consequently, it was
common to have multiple copies of the same data which comported problems of consistencies
between different versions and inefficient use of storage. Finally, the need for familiarity with
programming languages in order to use data, often prevented the end-users, i.e. non computer
professionals, from getting direct access to the data without going through a programmer
intermediary.

In the late 1960s and early 1970s, a series of software systems were developed to simplify the
task of maintaining and accessing persistent data. These systems began evolving to database
management systems by centralizing the control of data and providing a uniform interface to
it: the system rather than a user’s application program has the responsibility for maintaining
and manipulating data by providing the application programs with a logical view of the data,
hiding the details of the structures employed to store and access them. In addition, to simplify
the programming task of each user, the database management system promotes the sharing
of data among users.

The term database is sometimes used for any computerized collection of data. Here, we
use a more narrow definition which restricts the use of the term to what is sometimes called
formatted data.

4.2. Functions of a DBMS 54

� Definition 4.1
A database is a collection of persistent data, partitioned into two:

a) The schema, a collection of time-invariant definitions which describe the structure of
admissible data, as well as constraints on legal data values, i.e. integrity constraints,
(the intensional database).

b) The data, a time-variant representation of specific facts (the extensional database), with
the following characteristics:

- They are organized in sets, and associations are defined between these sets using
the abstraction mechanism of a data model.

- They occur in large quantities and do not fit in a conventional main memory.

- They are persistent, i.e. once created, the data continue to exist until being explic-
itly deleted.

- They are accessed by an atomic work unit (called transaction) which, when ex-
ecuted, commits either all or none of the changes effected to the extensional
database.

- They are protected both from unauthorized users and from hardware and soft-
ware failures.

- They are shared concurrently by several users.1

All above features are guaranteed by a Data Base Management System (DBMS), defined as
follows:

� Definition 4.2
A DBMS is a centralized or distributed software system, which provides the tools to
define the database schema, to select the data structures needed to store and retrieve
data easily, and to access the data, interactively using a query language or by means of
a programming language.

A more detailed presentation of the operational facilities provided by a DBMSs follows.

4.2 Functions of a DBMS

A DBMS will provide a number of different services and utilities. However, some DBMSs, es-
pecially those designed for personal computers, provide only a subset of the capabilities that
will be discussed below. For example, in order to keep the system price low, many small sys-
tems do not provide facilities for concurrency control and data recovery. In general, however,
such facilities are considered essential in the computerized information systems implemented
in medium-sized or large organizations.

1. The term “user” is adopted throughout this paper to mean either an end-user or an application program which
is performing data manipulation operations.

4.2. Functions of a DBMS 55

4.2.1 Separation of Data Description and Data Manipulation

In programming languages, the data declarations and the executable statements usually con-
stitute a single program module. With DBMSs, instead, there is a separation of the database
description, the schema, from application programs that use data. Several levels of data de-
scription are supported: physical level, logical level, logical view level.

The physical level is the lowest level of abstraction at which the database is described. This
level contains the description of the data structures used to store and access the data. The
principal data structures used will be discussed in a later chapter.

The logical level, often called the conceptual level, is the next level of abstraction and describes
the logical structure of the data and the relationships established among them, i.e. the schema,
using a language which supports the abstraction mechanisms of a particular data model. The
language used for the classical data models — the hierarchical, network, and relational data
models, discussed below — is called the Data Description Language (DDL), since only data are
described in the database schema and not procedural aspects.

The logical view level is the level at which that part of the entire database which is accessible
to a certain class of users is described (external schema). There may be many views of the same
database, and all of them are defined in terms of the schema given at the logical level. For
example, only some classes may be accessible and only a subset of the attributes of an element
are visible for a particular user category. An external schema is not necessarily a subset of a
schema, it can also contain new classes, defined in terms of those actually present in the
database.

The description of the database at these different levels is given by the person responsible
for creating the database, usually known as the database administrator (DBA), and the infor-
mation in the schema is usually stored in a system catalog, described in the following, which
constitutes an additional database that can be queried by users.

Example 4.1
The difference between the levels of data description can be understood using an exam-
ple of a relational database for university employees. At the logical level, the database
structure is described in terms of the following table:

CREATE TABLE Persons (Name CHAR(30),
FiscalCode CHAR(15),
Salary INTEGER,
Status CHAR(6),
Address CHAR(8))

At the logical view level, to the administration office and to the library is not allowed to
access all the information in the table Persons, but only a subset of them:

CREATE VIEW PersonsForAdministration AS
SELECT Name, FiascalCode, Salary, Status
FROM Persons

CREATE VIEW PersonsForLibrary AS
SELECT Name, Address
FROM Persons

A view is a table computed from others as we will see later.

4.2. Functions of a DBMS 56

Finally, at the physical level, the database designer selects a data organization for each
database table from a set of possible options, e.g., sequential, hash or tree structured
organizations. However, the user of a class will be unaware of the physical organization
selected for this class:

MODIFY Persons TO HASH ON Name

These three levels of data description were proposed in 1978 by the ANSI/X3/ SPARC study
group on DBMSs, with the aim of guaranteeing two important properties: physical and logical
data independence.

Physical data independence means that modifications to the physical database organization
will not imply modifications to how the database is queried by users or by applications pro-
grams.

Logical data independence means that the mechanism used to define external schemas should
ensure that certain modifications to the logical schema, such as adding new definitions for
example, will not comport changes to queries or to the application programs, but simply a
redefinition of the associated external schemas in terms of the new logical schema. The only
kind of change in the logical schema that cannot be reflected in a redefinition of an external
schema is the deletion of information in the logical schema which corresponds to information
present in the external schema. Logical data independence is highly desirable because of the
costs involved in software maintenance.

Although these three levels of data description are not supported in most DBMSs, some sys-
tems, for example the relational ones, have physical and logical data independence.

4.2.2 Database Languages

The operators associated to the data model used to access or modify the database constitute
the so-called Data Manipulation Language (DML) of a DBMS. Typically, the DML may be used
either in a stand-alone mode as a query or update language, or it may be used in a host
language mode, i.e. embedded in a programming language.

There are two kinds of data manipulation operators:
- Procedural, which are “record oriented”, in the sense that they deliver one record at a time

and require that a user, wishing to retrieve a particular set of records, writes a proce-
dure which implements an appropriate search strategy to “navigate” through the database
structure.

- Nonprocedural, or declarative, which are “set oriented”, in the sense that they deliver a set
of records satisfying a condition and require a user to characterize the data he wants, with
the system assuming the responsibility for devising an appropriate search strategy.

In addition to query language and programming language interfaces for the application pro-
grammer, a DBMS will offer a language for report generation, i.e. a language in which the user
can specify a query together with requirements on the visual form of output, and a language
for data entry, i.e. a language in which non-computer professionals can specify database entry
and update on-line.

4.2. Functions of a DBMS 57

4.2.3 Data Control

A DBMS provides a number of facilities to control the physical and logical integrity of data.
These facilities are:

- Access control which limits the kind of access to the database allowed to a particular user. In
fact, although the purpose of a DBMS is to facilitate database sharing by users, this sharing
must be selective. The owner of data should be able to specify the nature of the access
privileges allowed to those users who will access the data (i.e. read only or read/write),
to allow certain users to see only certain fields or certain records, or even to allow only a
view of aggregate values (such as averages).

- Integrity control which prevents data which violate the constraints declared in the database
schema from being entered into the database.

- Concurrency control which ensures that users simultaneously accessing a database do not
interfere with one another. In fact, when more than one user accesses the same data, un-
predictable results can occur.

For example, let us assume that John and Jane have a joint savings account and both go to
different tellers. The current balance is 350¤. Jane wishes to add 400¤ to the account. John
wishes to withdraw 50¤. Let us assume the following events happen in the order in which
they are shown:

Jane’s teller reads 350¤,
John’s teller reads 350¤,
Jane’s teller writes 750¤,
John’s teller writes 300¤.

The account now reads 300¤, and this certainly is not a correct way to allow more than
one person to use the same account.

- Data recovery which entails restoring the database to a consistent state after the occurrence
and detection of a failure. A database may become inconsistent because of a transaction
failure, a system failure, or a media (disk) failure.

� Definition 4.3
A transaction is a sequential program with embedded database operations and the fol-
lowing properties properties:

Atomicity Only transactions terminated normally (committed transactions) change
the database; if a transaction execution is interrupted because of a fail-
ure (aborted transaction), the state of the database should remain un-
changed as if no operations of the interrupted transaction had occurred.

Durability The effects of a committed transaction are permanent and must survive
system and media failures, i.e. commitment is an irrevocable act.

Isolation When a transaction is executed concurrently with others, the final effect
must be the same as if it were executed alone.

The acronym ACID is sometimes used to refer to the following four properties of transactions:
Atomicity, Consistency, Isolation, and Durability. Among these properties, atomicity, durability
and isolation are provided by a DBMS. Consistency cannot be ensured by the system when

4.2. Functions of a DBMS 58

the integrity constraints are not declared in the schema. However, assuming that each trans-
action program maintains the consistency of the database, the concurrent execution of the
transactions by a DBMS also maintain consistency due to the isolation property.

The isolation property is sometime called the serializability property: when a transaction is
executed concurrently with others, the final effect must be the same as a serial execution of
committed transactions, i.e. the DBMS behaves as if it executes the transactions one at a time.

� Definition 4.4
A transaction failure is an interruption of a transaction which does not damage the con-
tent of both the temporary memory (buffers) and the permanent memory.

A transaction can be interrupted because (a) the program has been coded in such a way that
if certain conditions are detected then an abort must be issued, (b) because the DBMS detects
a violation by the transaction of some integrity constraint or access right, or (c) because it
was decided to terminate the transaction since it was involved in a deadlock detected by the
DBMS. When a transaction aborts, its actions are undone automatically by the recovery facility,
restoring the database to the same state it had at beginning of the transaction.

� Definition 4.5
A system failure is an interruption (crash) of the system (either the DBMS or the com-
puter) in which the contents of the temporary memory are lost, but the contents of the
permanent memory remain intact.

When a system crash occurs, the DBMS is restarted (automatically or by an operator). The
DBMS ensures that all transactions which were not completed at the time of the crash are
undone, whereas all those which were completed have their effects reapplied to the database
if necessary.

� Definition 4.6
A media failure, or a catastrophe, is an interruption of the DBMS in which the contents of
the permanent memory are lost.

When a media failure occurs, the recovery facility can use its historical data to reconstruct the
current database contents starting from a prior version of the database.

Techniques used by DBMSs for concurrency control and data recovery will be considered
later.

4.2.4 A User-Accessible System Catalog

The system catalog (data dictionary or meta-data, the ‘data about data’) is a special purpose
database, maintained by the system, to store data that describe the structure of the objects in
a database.

The catalog schema is designed by the DBMS vendor, and an instance of the catalog is
created automatically whenever a new database is created. The catalog can be queried as any
other databases. Examples of catalog tables for a relational DBMS are described in Figure 4.1.

4.2. Functions of a DBMS 59

Table Type of Information

SYSTABLES Information about the relational tables
SYSCOLUMNS Information about the columns in tables and views
SYSVIEWS Information about views
SYSINDEXES Information about the indexes on tables
SYSKEYS Information about the keys on tables

Figure 4.1: Examples of system catalog tables

4.2.5 Facilities for the Database Administrator

DBMSs provide important facilities for the data administrator; he needs tools to accomplish
at least the following tasks:

- Definition of the database schema.
- Specification of integrity constraints.
- Definition of external schemas for different applications.
- Definition of data structures to improve the performance of the database operations.
- Granting of data access authorization to the various users of the database.
- Monitoring of DBMS performances and database tuning.
- Restoring the database after a media failure and restructuring the database when the

schema changes.

4.2. Functions of a DBMS 60

Chapter 5

SQL: A RELATIONAL DATABASE
LANGUAGE

5.1 Introduction

SQL (Structured Query Language) is the most widely used relational database language. An
initial version was proposed in 1975, the standard version is called SQL-92, and recently was
completed the SQL:99 version for object databases. The purpose of the following sections is to
introduce just some of its features, since a full treatment of the language is beyond the scopes
of this report.

5.2 The Data Definition Sublanguage

A relation schema is specified using the CREATE TABLE command of SQL. This command has a
rich syntax which we will not introduce here. As a bare minimum, CREATE TABLE specifies the
typing constraint: the name of a relation and the names of the attributes with their associated
types. However, the same command can also specify primary and candidate keys, foreign key
constraints, and other semantic constraints.

The Students relation is defined as follows:

CREATE TABLE Students (
Name CHAR(20) NOT NULL,
StudentNo INTEGER NOT NULL,
City CHAR(20) NOT NULL,
BirthYear INTEGER NOT NULL,

PRIMARY KEY (StudentNo),
UNIQUE (Name, BirthYear)
CHECK (BirthYear > 1900));

NULL values, which are special values used to indicate unknown or nonexistent attribute value,
are not allowed in keys. In the following it is assumed that the values of the attributes of the
tables ennuples are always known. The impact of null values on SQL queries will be discussed
in Section 5.4.

One additional feature to note is that a default value can be specified for an attribute. This
value will be automatically assigned to the attribute of a tuple should the tuple be inserted
without this attribute being given a specific value. Semantic constraints are specified using
the CHECK clause.

A relation schema can be modified using the ALTER TABLE command and deleted with the
DROP TABLE command.

5.3. Access Control 62

In relational databases, it is common for tuples in one relation to reference tuples in the same
or other relations to model associations. It is a violation of data integrity if the referenced
tuple does not exist in the appropriate relation. For example, it makes no sense to have a
ExamResults tuple with candidate 100 and not have the tuple with StudentNo = 100 in the
relation Students. The requirement that the referenced tuple must exists is called referential
integrity. One important type of referential integrity is the so-called foreign key constraint.

The following example shows how foreign key constraints are specified in SQL:

CREATE TABLE ExamResults (
Subject CHAR(20) NOT NULL,
Candidate INTEGER NOT NULL,
Date CHAR(8) NOT NULL,
Grade INTEGER NOT NULL,

PRIMARY KEY (Subject, Candidate),
FOREIGN KEY (Candidate)

REFERENCES Students
ON DELETE NO ACTION);

The FOREIGN KEY clause has the option ON DELETE to specify what to do if a referenced tuple
is deleted. NO ACTION means that any attempt to remove a Students tuple must be rejected
outright if the student is referenced by a ExamResults tuple. The option ON DELETE CASCADE
means that the referencing tuple is to be removed too. The option ON DELETE SET NULL means
that the foreign key attributes in the references tuple must be set to NULL. Similar options are
provided for the option ON UPDATE. NO ACTION is the default situation when ON DELETE or ON
UPDATE is not specified.

More general remedial actions can be specified when a constraints is violated using the
trigger mechanism: Whenever a specific event occurs, a specified action is executed.

Besides ordinary tables, also virtual tables (called views) can be defined with the CREATE
VIEW command. A view can be queried as an ordinary table, but its content does not physically
exist in the database, instead, a definition of how to construct the view from ordinary database
tables is given as a query with the CREATE VIEW command and stored in the system catalog.

For example, the following view defines the students of Pisa:

CREATE VIEW PisaStudents AS
SELECT Name, StudentNo, BirthYear
FROM Students
WHERE City = ’Pisa’;

5.3 Access Control

Since databases often contain sensitive information, a DBMS ensures that only those authen-
ticated users who are authorized to access the database are allowed to and they are only
allowed to access information that has been specifically made available to them.

SQL provides the GRANT and REVOKE commands to allow security to be set up on the tables
in the database. When a user create a table he automatically becomes the owner of the table
and receives full privileges for the table. To allow other users the access to the table, the owner
must explicitly grant them the necessary privileges using the GRANT command:

5.4. The Query Sublanguage 63

GRANT { privilegeList | ALL PRIVILEGES } [(columnName [, columnName])]
ON objectName
TO { authorizationIdList | PUBLIC }
[WITH GRANT OPTION]

Privileges are the actions that a user is permitted to carry on a given base table or view (the
objectName); examples are:
– SELECT: to retrieve data from a table.
– INSERT, MODIFY, DELETE: to insert, to modify or to delete rows.
– REFERENCES: to reference columns of a table in integrity constraints.

The INSERT, MODIFY, and REFERENCES privileges can be restricted to specific columns of a table.
The WITH GRANT OPTION clause allows the users in the authorization list to pass the privileges
that they have to others users.

Example 5.1
Granting and revoking privileges to users:

GRANT ALL PRIVILEGES
ON MyTable
TO MyFriend WITH GRANT OPTION;

GRANT SELECT, UPDATE(Grade)
ON Exams
TO Albano;

GRANT SELECT
ON Students
TO PUBLIC;

REVOKE SELECT
ON Students
FROM PUBLIC;

5.4 The Query Sublanguage

SQL provides the SELECT command to define a query to retrieve data from a database. A
query expresses in a declarative way what we are looking for rather than how to compute the
result, as it happens with a relational algebra expression (logical plan). Another important
aspects of SQL is that the tables of a database may be without keys and so they are not set but
multiset (bags). Therefore, in order to understand the semantics of an SQL query in terms of a
relational algebra expression, the relational algebra is extended on multisets as follows.

5.4. The Query Sublanguage 64

Relation operations on multisets
– Multiset projection: πbA1,A2, . . . ,Am (E)

where A1,A2, . . . ,Am are attributes of E.
The operator returns the tuples of E projected onto the attributes A1,A2, . . . ,Am, without
duplicates elimination, as it happens with the π operator of relational algebra, which is
not any longer available.
The result is a multiset with type {{(A1 : T1,A2 : T2, . . . ,Am : Tm)}}.

– Duplicate elimination: δ(E)

The operator returns the tuples of E without duplicates.
– Sort: τA1,A2,...,Am(E)

where A1,A2, . . . ,Am are attributes of E.
The result is a list with the tuples of E sorted in ascending order on the attributes A1,A2, . . . ,
Am and type {{(A1 : T1,A2 : T2, . . . ,An : Tn)}}. To sort in descending order the attributes
becomes pairs Ai d, where d stands for “descending”.
Since the the operator returns a list of tuples, rather than a multiset, it is meaningful as the
root of a logical plan only.

– Multiset union, intersection and difference: E1 ∪b E2, E1 ∩b E2, E1 −
b E2

Note that in SQL the order of the relational attributes is important: two relations R and S
have the same type if (a) they have the same set of pairs (attribute, type), and (b) the order
of the attributes is the same for both relations.

If an element t appears n times in E1 and m times in E2, then
– t appears n+m times in the multiset E1 ∪b E2:

{1, 1, 2, 3}∪b {2, 2, 3, 4} = {1, 1, 2, 3, 2, 2, 3, 4}

– t appears min(n,m) times in the multiset E1 ∩b E2:

{1, 1, 2, 3}∩b {2, 2, 3, 4} = {2, 3}

– t appears max(0,n−m) times in the multiset E1 −
b E2:

{1, 1, 2, 3}−b {1, 2, 3, 4} = {1}

The extension of the other relational algebra operators (selection, grouping, product, join)
from sets to bags is obvious.

NULL values and Three-Valued Logic
In SQL, the basic boolean values of TRUE and FALSE are supplemented with another called
NULL (in some SQL database systems the boolean value UNKNOWN is used instead of NULL).
This is because SQL acknowledges that data can be incomplete or inapplicable and that the
truth value of a predicate may therefore not be knowable. Specifically, a column can contain a
NULL, which means that there is no known applicable value. A comparison between two values
using relational operators – for example, a = 5 – normally is either TRUE or FALSE. Whenever
nulls values are compared to other values, including other nulls values, the boolean value is
neither TRUE nor FALSE but is itself NULL.

5.4. The Query Sublanguage 65

In several cases NULL has the same effect as FALSE. The major exception is that, while NOT
FALSE = TRUE, NOT NULL = NULL. In other words, if you know that an expression is FALSE, and you
negate it, then you know that it is TRUE. If you do not know whether it is TRUE or FALSE, and
you negate it, you still do not know the value. In some cases, this three-valued logic can create
problems in finding correct data if it was not taken into account when writing the query. You
can treat nulls specially in SQL with the IS NULL or IS NOT NULL predicates.

Our coverage of null values is not complete. The presence of NULL values complicate the
correct use of the SQL query language. For this reason, the following SQL operators for data
search will be presented assuming to operate on tables without null values and with operators that
do not produce null values. The interested reader should consult a book on SQL for the full
treatment of the topic.

The SELECT syntax
Let us consider a simplified version of the command syntax.

SELECT DISTINCT Attributes
FROM Tables
WHERE Condition
ORDER BY Attributes;

where

Attributes ::= ∗ | Attribute {, Attribute }
Tables ::= Table [Ide] {, Table [Ide]}

The asterisk means to retrieve all attributes; alternatively, the desired attributes are listed
separated by commas. The DISTINCT, WHERE and ORDER BY clauses only are optional.

The semantics of the SELECT command is given with the following equivalence:

SELECT ∗
FROM R1, . . . ,Rn
WHERE C; ≡ σC(R1 × . . .× Rn)

SELECT DISTINCT A1, . . . ,An
FROM R1, . . . ,Rn
WHERE C; ≡ δ(πbA1, . . . ,An(σC(R1 × . . .× Rn)))

SELECT DISTINCT A1, . . . ,An
FROM R1, . . . ,Rn
WHERE C

ORDER BY A1,A2; ≡ τA1,A2(δ(π
b
A1, . . . ,An(σC (R1 × . . .× Rn))))

Example 5.2
Suppose you wanted to retrieve from the Students table the information on student
named “Rossi”. This is called making a query. To do it, you could issue the following
command:

5.5. Aggregation over Data 66

SELECT ∗
FROM Students
WHERE Name = ’Rossi’;

SELECT is a keyword telling the database that this is a query. The asterisk means to
retrieve all columns; alternatively, you could have listed the desired columns by name,
separated by commas.

The FROM Students clause identifies the table from which you want to retrieve the data.
WHERE Name = ’Rossi’ is a predicate, and all rows that make the predicate TRUE are

returned. This is an example of set-at-a-time operation. The predicate is optional, but in
its absence the operation is performed on the entire table, so that, in this case, the entire
table would have been retrieved. The semi-colon is the command terminator.

Set Queries: Union, Intersection, Difference
Set queries are expressed by the following forms:

(<subquery>) UNION [ALL] (<subquery>)
(<subquery>) INTERSECT [ALL] (<subquery>)
(<subquery>) EXCEPT [ALL] (<subquery>)

The set operators have set semantics, adding the ALL keyword forces bag semantics (duplicates
allowed).

The semantics of the set queries is given with the following equivalence:

SELECT ∗
FROM R

UNION
SELECT ∗
FROM S; ≡ R∪ S

SELECT ∗
FROM R

INTERSECT
SELECT ∗
FROM S; ≡ R∩ S

SELECT ∗
FROM R

EXCEPT
SELECT ∗
FROM S; ≡ R− S

5.5 Aggregation over Data

SQL provides five built-in functions, called aggregate functions, which operates on set of tuples.
They are:

5.5. Aggregation over Data 67

– COUNT([DISTINCT] Attr): count the number of values in column Attr of the query result. The
optional keyword DISTINCT indicates that each value should be counted only once, even if
it occurs multiple times in different answer tuples. COUNT(∗) counts the number of tuples of
the query result;

– SUM([DISTINCT] Attr): sum up the values in column Attr of the query result. DISTINCT indicates
that each value should contribute to the sum only once, regardless of how often it occurs
in column Attr;

– AVG([DISTINCT] Attr): compute the average of the values in column Attr of the query result.
Again DISTINCT means that each value should be used only once;

– MAX(Attr), MIN(Attr): compute the maximum or the minimum value in the column Attr.
For example, the following query returns the number of students tuples:

SELECT COUNT(∗)
FROM Students;

The following query returns the average birth year of students:

SELECT AVG(BirthYear)
FROM Students;

Note that it is not possible to mix an aggregate function and an attribute in this form of SELECT, as
in

SELECT Name, AVG(BirthYear)
FROM Students;

To write such kind of SELECT the GROUP BY clause must be used with the following version of
the command syntax.

SELECT DISTINCT SA, SAF
FROM T
WHERE WC
GROUP BY GA
HAVING HC
ORDER BY OA;

where
– SA are the select attributes and SAF are the select aggregation functions;
– T are the FROM tables;
– WC is the WHERE condition;
– GA are the grouping attributes, with SA ⊆ GA;
– HC is the HAVING condition with aggregation functions HCAF

;
– OA are the sorting attributes;
– the DISTINCT, WHERE, HAVING and ORDER BY clauses are optional.

The command semantics with tables R and S, and all the optional clauses specified, in terms
of the extended relational algebra is shown in Figure 5.1.
For example

SELECT Name, AVG(BirthYear)
FROM Students
GROUP BY Name;

5.5. Aggregation over Data 68

τOA

δ

πbSA ∪SAF

σHC

GA
γSAF ∪HCAF

σWC

×

R S

ORDER BY OA

DISTINCT

SELECT SA, SAF

HAVING HC

GROUP BY GA

WHERE WC

FROM R, S

Logical query planSELECT command

Figure 5.1: SELECT command with GROUP BY semantics

GROUP BY partition a set of tuples into groups whose membership is characterized by the fact
that all of the tuples in a single group agree on the value of Name. The aggregate function
AVG(BirthYear) then applies to the groups and produces a single value for each group. The
result is a relation having two attributes, the student Name and the AVG(BirthYear). The im-
portant point is that each attribute in the SELECT clause either must be in the GROUP BY clause or
must be the result of an aggregate function.

The HAVING clause is only used in conjunction with GROUP BY. The HAVING condition (un-
like the WHERE condition) is applied to groups, not to individual tuples, to specify a condition
that restricts which groups (specified in the GROUP BY clause) are to be considered for the
final query result. Groups that do not satisfy the condition are removed.

SELECT Name, AVG(BirthYear)
FROM Students
GROUP BY Name
HAVING COUNT(∗) > 0;

Finally, the order of tuples in the query result is generally unpredictable. If a particular order-
ing is desired, the ORDER BY clause can be used:

SELECT Name, BirthYear
FROM Students
ORDER BY Name;

Ascending order is used by default, but descending order can also be specified:

SELECT Name, BirthYear
FROM Students
ORDER BY DESC Name;

5.6. Nested Queries 69

5.6 Nested Queries

Nested subqueries increase the expressive power of SQL, but are one of the most complex,
expensive, and error-prone feature of SQL.

Consider the query “list the student code of the students who did not pass any exams”:

SELECT StudentNo
FROM Students
WHERE StudentNo NOT IN (

== Students who have passed an exam
SELECT Candidate
FROM ExamResults) ;

Another useful operator is EXISTS to check if a nested subquery returns no answer. For exam-
ple, here is another formulation of the above query:

SELECT StudentNo
FROM Students s
WHERE NOT EXISTS (

== All exams passed by a student
SELECT ∗
FROM ExamResults
WHERE Candidate = s.StudentNo) ;

SQL nested queries cannot be expressed easily into in terms of the extended relational algebra,
since there is no relational algebra operation equivalent to the subquery construct. Extensions
of relational algebra have been proposed for this task, but they are beyond the scope of this
report.

5.7 Queries that Require Universal Quantifiers

One major disadvantage of SQL is its lack of a universal quantification construct to express
the for all and every phrases in a natural and intuitive way.

For example, let us consider the following database

Students(StudentNo, Name, City, YearOfBirth)
Exams(Subject, Candidate*, Grade, Date)

A query that requires universal quantification is “Find the name and student code of the students
who have passed all their exams with top grade 30”.

The following method is proposed to be helpful to write in SQL this kind of queries: Let
us assume that we have two non-SQL clause FOR ALL, FOR SOME to express an universal or
existential quantification, and then we give a rule to translate the query in standard SQL.

ForAllPredicate ::= FOR ALL x IN S [WHERE C1(x)] : C2(x)
ForSomePredicate ::= FOR SOME x IN S [WHERE C1(x)] : C2(x)

FOR ALL evaluates to true if and only if the condition C2(x) evaluates to true for all the tuples of
x IN S [WHERE C1(x)].

FOR SOME evaluates to true if and only if the condition x evaluates to true for some of the tuples
of x IN S [WHERE C1(x)].

5.7. Queries that Require Universal Quantifiers 70

A FOR ALL, which does not exist in SQL, can then be converted into an equivalent predicate
involving FOR SOME instead, by virtue of the following identity:

∀x P(x))↔ ¬∃x¬P(x)

A FOR SOME is represented easily in SQL by an expression of the form EXISTS (SELECT *
FROM ...).

Example 5.3
Let us see how to write in SQL the query “Find the name and student code of the students
who have passed all their exams with top grade 30”.

First, let us write the query with the ForAllPredicate:

SELECT StudentNo, Name
FROM Students s
WHERE FOR ALL e IN Exams

WHERE e.Candidate = s.StudentNo
: e.Grade = 30;

Then, let us rewrite the FOR ALL using the FOR SOME:

SELECT StudentNo, Name
FROM Students s
WHERE NOT FOR SOME e IN Exams

WHERE e.Candidate = s.StudentNo
: NOT (e.Grade = 30);

Hence the SQL formulation is:

SELECT StudentNo, Name
FROM Students s
WHERE NOT EXISTS (

SELECT *
FROM Exams e
WHERE e.Candidate = s.StudentNo AND NOT (e.Grade = 30));

The way in which has been written the initial query with the FOR ALL presents a problem:
if there is a student that has not passed any exam, he will appear in the result, because the
universal quantification evaluates to true if the set of tuples of IN Exams that satisfy the
WhereClause is empty.

To exclude this case, the query should be expressed as “Find the name and student code
of the students with some exam, who have passed all their exams with top grade 30”.

SELECT StudentNo, Name
FROM Students s
WHERE (FOR SOME e IN Exams

WHERE e.Candidate = s.StudentNo)
AND FOR ALL e IN Exams

WHERE e.Candidate = s.StudentNo
: e.Grade = 30;

The SQL formulation becomes:

5.8. Modifying Relation Instances 71

SELECT StudentNo, Name
FROM Students s
WHERE EXISTS (

SELECT *
FROM Exams e
WHERE e.Candidate = s.StudentNo)
AND NOT EXISTS (
SELECT *
FROM Exams e
WHERE e.Candidate = s.StudentNo AND NOT (e.Grade = 30));

5.8 Modifying Relation Instances

Relation instances are modified with the operators INSERT, UPDATE, and DELETE. INSERT places
rows in a table, UPDATE changes the values they contain, and DELETE removes them.

For INSERT, you simply identify the table and its columns and list the values, as follows:

INSERT INTO Students (Name, StudentNo, City, BirthYear)
VALUES (’Rossi’, 1234, ’Pisa’, 1990);

This command inserts a row with a value for every column but. If a value is specified for
every column of the table, and the values are given in the same order as the columns in the
table, the column list can be omitted. A SELECT command can be used in place of the VALUES
clause of the INSERT command to retrieve data from elsewhere in the database.

UPDATE is similar to SELECT in that it takes a predicate and operates on all rows that make
the predicate TRUE. For example:

UPDATE Students
SET City = ’Florence’
WHERE StudentNo = 1234;

This sets to ‘Florence’ the city for the student with StudentNo = 1234. The SET clause of an
UPDATE command can refer to current column values. “Current” in this case means the values
in the column before any changes were made by this command.

DELETE is quite similar to UPDATE. The following command deletes all rows for students from
‘Pisa’:

DELETE FROM Students
WHERE City = ’Pisa’;

You can only delete entire rows not individual values. Be careful with DELETE that you do not
omit the predicate; this empties the table.

5.9. Executing SQL Commands within Application Programs 72

5.9 Executing SQL Commands within Application Programs

In the previous sections, we discussed SQL as an interactive language: you type in a query and
then see the results on your screen. In order to write application programs, SQL commands
must included in some conventional language, such as C, COBOL, Java or Visual Basic. The
main problem to solve is the fact that a mismatch exists between the data structures of the
programming language, which operates on records, and those of SQL, which operates on
tables, i.e. multisets of records. Therefore, a mechanism is required to supply the result of an
SQL expression to the programming language, one element at a time.

The standard solution is to declare a cursor for each query to be evaluated: a cursor is a
“logical pointer” that ranges over all the tuples of the result of an SQL command. To evaluate
an SQL command, the cursor is opened, and then, using a fetch operator, the “next” tuple of
the result is retrieved, the components of each tuple are copied into a list of variables of the
host language program, and the cursor is advanced to point to the next tuple. An exception is
raised when a fetch is attempted beyond the last tuple of the result.

SQL commands can be included in an application program in three different ways:

1. Extended language. The language is a superset of SQL, supplementing it with standard
programming-language features that include the following: block (modular) structure,
flow-control commands and loops, variables, constants, and types, structured data, and
customized error handling. The language compiler can control completely that SQL com-
mands are well formed. A notably example is Oracle PL/SQL.

Let us illustrate the approach by showing two programs which print the name and birth
year of the students of Pisa. The first example use the standard cursor, while the second
example use a special construct FOR with an implicit cursor.

PROCEDURE Example1 (Cty IN Students.City%TYPE) IS
DECLARE

CURSOR c IS
SELECT Name, BirthYear
FROM Students WHERE City = Cty;

Stud Rec c%ROWTYPE;
BEGIN
– retrieve a set of records
OPEN c

LOOP
FETCH c INTO Stud Rec;
EXIT WHEN c%NOTFOUND;
PRINT ... Stud Rec.Name ... Stud Rec.BirthYear ...

END LOOP;
CLOSE c – cursor is released

5.9. Executing SQL Commands within Application Programs 73

PROCEDURE Example2 (Cty IN Students.City%TYPE) IS
BEGIN

FOR Stud Rec IN (
SELECT Name, BirthYear
FROM Students WHERE City = Cty)

LOOP
PRINT ... Stud Rec.Name ... Stud Rec.BirthYear ...

END LOOP; – cursor is released
END

2. Application programming interface (API). Rather than design a new compiler, a standard pro-
gramming language is used with a library of functions (API) which accept string SQL as
parameter. Since SQL commands are passed to a function as strings, they cannot be con-
trolled statically by the compiler, but are controlled dynamically by the DBMS. Microsoft’s
ODBC is the C/C++ standard API on Windows while Sun’s JDBC is the Java equivalent.
The API are DBMS-neutral and a driver traps the calls and translates them into DBMS-
specific code.

Let us illustrate the approach by showing a Java program which print the name and birth
year of the students of Pisa using the JDBC API.

class PrintStudentsName{
public static void main(String argv[]){
Class.forName(”DBMS driver”);
Connection con = // connect

DriverManager.getConnection(”url”, ”login”, ”psw”);
Statement stmt = con.createStatement(); // set up stmt
String query = ”SELECT Name

FROM Students
WHERE City = ”’ + argv[0] + ” ”’;

ResultSet iter = stmt.executeQuery(query);
System.out.println(”Names retrieved:”);
try { // to handle exceptions

// loop through result tuples
while (iter.next()) {

String name = iter.getString(”Name”);
int year = iter.getInt(”BirthYear”);
System.out.println(” Name: ” + name + ”; BirthYear: ” + year);

}
} catch(SQLException ex) {
System.out.println(ex.getMessage() + ex.getSQLState() + ex.getErrorCode());
}
stmt.close(); con.close();
}}

3. Embedded SQL. SQL commands can be used within a host language program. Before the
program can be compiled by the host language compiler, the SQL commands must be
processed by a pre-compiler, which check SQL syntax, the number and types of arguments
and results, and replace them into calls to a library of functions. At runtime these functions
communicate with the DBMS.

5.9. Executing SQL Commands within Application Programs 74

Let us illustrate the approach by showing a C program which prints the name and birth
year of the students of Pisa.

char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
char c sname[20]; short c BirthYear;
EXEC SQL END DECLARE SECTION
short c City = ”Pisa”;
EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.name, S.BirthYear
FROM Students S
WHERE S.City = :c City
ORDER BY S.name;

do{
EXEC SQL FETCH sinfo INTO :c sname, :c BirthYear;
printf(”Name:%s; BirthYear: %s ”, c sname, c BirthYear);

} while (SQLSTATE != 02000);
EXEC SQL CLOSE sinfo;

Let us show the same example in SQLJ, a dialect of embedded SQL that can be included in
Java programs. The pre-compiler replace SQLJ constructs by call to a library which accesses
a database using calls to a JDBC driver.

The command #SQL iterator GetInfoStIter . . . tells the pre-compiler to generate a class
GetInfoStIter which implements an iterator with the next() method. The class GetInfoStIte is
used to store result sets in which each row has two columns: a string and an integer. The
declaration gives a Java name to these columns, Name and Year, and implicitly defines the
column accessor methods, Name() and Year(), which can be used to return data stored in
the corresponding columns.

public static void main(String argv[]){
Oracle.connect(”jdbc:oracle:oci8:@”, ”scott”, ”tiger”);
#SQL iterator GetInfoStIter(String Name, int Year);
GetInfoStIter iter;
#SQL iter = {

SELECT Name, BirthYear AS Year
FROM Students
WHERE City =:(argv[0]) };

System.out.println(”Students retrieved”);
while (iter.next()) {

String name = iter.Name();
int year = iter.Year();
System.out.println(” Name = ” + name + ” Year = ” + year);

}
iter.close();
Oracle.close(); }

5.10. Exercises 75

5.10 Exercises

1. Give a relational schema in SQL for your solution to Exercise 3.3.1(3), and write the follow-
ing queries:
1) Retrieve the name and birth year of the employee’s child with code 350.
2) For each employee, retrieve the employee name and the name of the department where

he works.
3) Retrieve the names and birth years of female employees older than their supervisor.
4) Retrieve the names of employees who do not have supervisors.
5) Retrieve the names of employees who work for the Research department, and the de-

partment location.
6) For every project located in Pisa, list the project number and name, the controlling

department name, and the department manager’s name.
7) Retrieve the names of employees who have no dependents.
8) Retrieve the names of supervisors who have at least one dependent.
9) For each employee retrieve the employees name and the name of the immediate super-

visor.
10) Retrieve the names of employees who have a dependent with the same sex.
11) For each employee retrieve the employees name and the social security number, the

name of the project on which he works, and the name of the department that manages
the project, sorted by the names of the department and the employee.

12) For each project on which more than two employees work, retrieve the project number,
the project name, and the number of employees who work on the project.

13) For each project, retrieve the project number, the project name and the number of em-
ployees from department 10 who work on the project.

14) Retrieve the names of employees who have all dependants with their same sex.
15) Retrieve only the names of employees who have all dependants with the same sex.
16) Retrieve the names of employees who only work on projects for 20 percent-time.
17) Find the name of the employees who work at least on all the projects in which the

employee with code 100 participates.

5.10. Exercises 76

Part III

DBMS: The System Perspective

77

Chapter 6

DBMS ARCHITECTURE

6.1 Introduction

As a programming language transforms a computer into an abstract machine whose charac-
teristics and functionalities are mainly determined by those of the programming language, so
will a language to define and use databases transform a computer, and in particular its file
management system, into an abstract database machine, called the database management sys-
tem, whose characteristics and functionalities will depend mainly on those of the data model
adopted (Figure 6.1).

DBMS
RELATIONAL ENGINE

QUERY MANAGER

QUERY
OPTIMIZER

PHYSICAL PLANS
MANAGER

DDL
COMMANDS
MANAGER

CATALOG
MANAGER

STORAGE ENGINE

ACCESS METHODS
MANAGER

STORAGE STRUCTURES
MANAGER

BUFFER
MANAGER

PERMANENT MEMORY
MANAGER

TRANSACTION
AND

RECOVERY
MANAGER

CONCURRENCY
MANAGER

PERMANENT
MEMORY

DATABASE

LOG

DB BACKUP

SQL
COMMANDS

Figure 6.1: Architecture of a DBMS

An abstract database machine is normally divided into two: an abstract machine for the logical
data model and an abstract machine for the physical data model (from now on called the Relational
Engine and the Storage Engine).

The Relational Engine includes modules to support the following facilities:

6.2. Storing Collections of Records 80

– The Data Definition Language (DDL) Manager, which process a user’s database definition
of a logical schema, an external schema, and a physical schema.

– The Query Manager, which process a user’s query by transforming into an equivalent but
more efficient form, thus finding a good strategy for executing it.

– The Catalog Manager, which manage special data, called metadata, about the schemas of
the existing databases (views, storage structures and indexes), and security and authoriza-
tion information that describes each user’s privileges to access specific database, relations
and views, and the owner of each of them. The catalog is stored as a database which allows
the other DBMS modules to access and manipulate its content.

The relational engine interacts with the Storage Engine, which includes modules to support
the following facilities:
– The Permanent Memory Manager, which manages the page allocation and deallocation on

disk storage.
– The Buffer Manager, which manages the transfer of data pages between the permanent

memory and the main memory.
– The Storage Structures Manager, which manages the data structures to store and retrieve

data efficiently.
– The Access Methods Manager, which provides the storage engine operators to create and

destroy databases, files, indexes, and the data access methods of sequential scan, and index
scan.

– The Transaction and Recovery Manager, which ensures that database consistency is main-
tained despite transaction and system failures.

– The Concurrency Manager, which ensures that there is no conflict between concurrent
accesses to the database.

Normally the DBMS storage engine is not accessible to the user, who will interact with the
relational engine. An example of a system in which this structure is clearly shown is System
R, a relational DBMS prototype developed at the IBM scientific center in San Josè, from which
DB2 was then produced. This system has a relational engine called Relational Data System
(RDS) and a storage engine called Relational Storage System (RSS).

While the interface with the relational engine depends on the data model features, the inter-
face with the storage engine will be affected by the way the data are organized in permanent
memory. In the following sections, we will first present the main issues affecting storage man-
agement and then discuss how query processing, recovery management, and concurrency
control can be implemented.

6.2 Storing Collections of Records

We shall assume that a physical database is stored as a collection of records. Each record
consists of one or more attributes (or fields) of an elementary type, such as integers, character
strings, or pointers to other records. A collection of homogeneous records will be called a file.

For each file, there will be an attribute, called the primary key, whose value is unique for
each record occurrence. Although accessing records via their primary keys is very common,
other accesses may also be needed. At times, for instance, it is necessary to retrieve all records
containing a given value for some non-primary key attribute, called a non-key attribute.

6.2. Storing Collections of Records 81

When records are stored in permanent memory, the unit used for data transfer between per-
manent storage and main memory is not normally a record, but a page. Pages are assumed
to be of a fixed size, between 1 to 4 Kbyte, and to contain several records. The unit of cost for
data access is a page access (read or write), and we assume that the costs of computation in
main memory of the data in a page are negligible compared with the cost of a page access.

6.2.1 Page Structure

When a record is stored in the database, it is identified internally by a record identifier or tuple
identifier (RID), which is then used in all data structures as a pointer to the record. The exact
nature of a RID can vary from one system to another. An obvious solution is to take its address
(Page number, Beginning of record) (Figure 6.2a). But this solution is not satisfactory because a
record that contain variable-length attributes of type varchar are themselves variable-length
strings within a page; so updates to data records can cause growth and shrinkage of these
byte strings and may thus require the movement of records within a page, or from one page
to another. When this happens all the references to the record in other data structures, most
notably for indexing purposes, must be updated.

To avoid this problem, another solution is usually adopted: the RID consists of two parts
(Page number, Slot number), where the slot number is an index into an array stored at the end
of the page, called slot array. containing the full byte address of a record (Figure 6.2b). All
records are stored contiguous, followed by the available free space.

If an updated record moves within its page, the local address in the array only must change,
while the RID does not change. If an updated record cannot be stored in the same page
because of lack of space, then it will be stored in another page, and the original record will be
replaced by a forwarding pointer (another RID) to the new location. Again, the original RID
remains unaltered. A record is split into smaller records stored in different pages only if it is
larger than a page.

Each page has a page header (HDR) that contains administrative information, such as the
number of free bytes in the page, the reference at the beginning of the free space, and the
reference to the next not empty page of the file.

HDR Record
Record Record

Free space

RID

(a)

HDR Record
Record Record

Slot array

Free space

RID

(b)

Figure 6.2: Pointers to records

6.3. Heap and Sequential Organizations 82

6.2.2 Table Organizations

In the following sections, we shall first consider table organizations which support primary
key and non-key attribute retrievals. Attention will be focussed on the typical solutions cur-
rently adopted in DBMSs. Of course, many other types of organization have been studied for
specific applications (e.g., organizations for geometric data, pictures, and text), but they are
outside the scope of this book.

A table organization is identified by the following two properties.

� Definition 6.1
A table organization is called a primary organization if it determines the way the records
are physically stored, otherwise it is called a secondary organization.

� Definition 6.2
A table organization is said to be static if it has been designed to handle a given table
size and, if the table exceeds this size, is not able to preserve efficiency; this implies
a degradation of performance which entails a periodic reorganization. In contrast, an
organization is said to be dynamic if it gradually evolves as records are added, thus
preserving efficiency without the need for reorganization.

6.3 Heap and Sequential Organizations

The simplest way to organize data is store them in pages in the arrival order rather than in
some special order. In this way, the pages allocated to data can be contiguous or can be linked
in a list. This type of file organization is called a heap organization. Instead, when the records
are stored in the order of a primary key, we have a sequential organization. Commercial DBMSs
use the external merge sort algorithm for sorting a file.

6.4 Primary Key Organizations

The goal of a primary key organization is to be able to retrieve a record with a specified
primary key value in as few accesses as possible, one is the optimum. In order to achieve this,
a mapping from the set of primary keys to the set of record is defined. The mapping can be
implemented as a function, implemented with an hashing technique or with a tree structure.

In the first case a hash function h is used that maps the key value k to the value h(k). The
value h(k) is used as the address of the page in which the record is stored.

In the second case a tree structure called B+-tree is used, with all records stored ordered
in leaf nodes, and the leaf nodes are linked together. This solution is called index-sequential
organization.

With a secondary organization the mapping from a key to the record is implemented with
tabular method, listing all inputs and outputs, commonly known as an index. A secondary orga-
nization helps answer queries but do not affect the location of the data.

An index in this context has a role similar to that of a book. The pages of a book are ordered,
and to find information about a particular subject, we use the index in the back of the book,
in which we look up a keyword to get the list of one or more pages on which the keyword
appears. In a similar way, in the case of the set of records of a table, to find a record with a

6.5. Solutions for Relational DBMS 83

given attribute value, we first look at the index defined on the attribute to get the location of
the records in the table, and then the records are retrieved. As in the book index analogy, the
index is ordered on the attribute values.

� Definition 6.3
Let R be a table of records with an attribute A. An index I on a key A is a sorted table
I(A, RID) onA, with (Nrec(I) = Nrec(R)). An entry of the index is a tuple (A := ai, RID :=
ri), where ki is a A value for a record, and ri is a reference (RID) to the corresponding
record in R. The records R are stored with an independent organization.

To access a record through an index, the index is first accessed to obtain the reference to the
record, and then the record is retrieved. The index is stored in permanent memory using a
primary organization.

An index can be defined on a key attribute, on a non-key attribute or on a set of attributes. In
the last case, the index, called composite, contains an element for each combination of values
of the attributes in the table, and can be used to execute efficiently queries that specify a value
for each of these attributes or for a prefix of them.

Figure 6.3 shows two example of indexes on two attributes of the relation R, the key K and
a non-key attribute A, assuming for simplicity that the RIDs are integers that represent the
position of the record in the relation.

R

RID K A . . .

1 k5 d . . .
2 k3 b . . .
3 k7 a . . .
4 k6 c . . .
5 k2 b . . .
6 k4 g . . .
7 k1 c . . .

.

IdxK

K RID

k1 7
k2 5
k3 2
k4 6
k5 1
k6 4
k7 7
.

IdxA

A RID

a 3
b 2
b 5
c 4
c 7
d 1
g 6

.

Figure 6.3: Example of a relation with two indexes

An index can also be defined on a set of attributes. In this case, the index contains a record
for each combination of values of the attributes in the relation, and can be used to execute
efficiently queries that specify a value for each of these attributes.

6.5 Solutions for Relational DBMS

DBMSs normally use a combination of these basic techniques to store data, depending on the
abstraction mechanism of the data model and the associated operators. We shall now describe
the solutions adopted by some relational DBMSs.

In INGRES, released by Relational Technology, when a relation R(A1 : T1, . . . ,An : Tn) is cre-
ated, it is organized as a heap in which tuples are not sorted and duplicates are not removed.
However, once data have been loaded, the structure can be converted into a sequential, a
static hashing, or a primary index-sequential organization with a static index, using a modify
statement of the form:

6.6. Query Processing 84

MODIFY R TO HEAPSORT ON Ai ASC;
MODIFY R TO HASH ON Ai;
MODIFY R TO ISAM ON Ai;

The modify command has other options, which permit the specification of a primary key
organization (e.g., hash unique on Ai), or a compressed version of the previous organizations
(e.g., cheapsort, chash, and cisam).

It is also possible to define a secondary index, with the command:

CREATE INDEX Name ON R(Ai);

An index is treated as binary relations with tuples (Ai,RID). A secondary index can be defined
on a combination of at most six attributes. A secondary index is initially created as a heap can
and then be modified in the same way as any other relation.

In Oracle a primary key organization implemented with a tree structure, called IOT (index
organized table), is created with the command:

CREATE TABLE R(Pk Type PRIMARY KEY, . . .) ORGANIZED INDEX;

In SQL Server a primary key organization implemented with a tree structure is created with
the definition of a CLUSTERED INDEX on the primary key of a relation with the commands:

CREATE TABLE R(Pk Type PRIMARY KEY, . . .);
CREATE CLUSTERED INDEX RTree ON R(Pk);

6.6 Query Processing

We have considered different types of organizations which can be adopted to store databases.
When a query is presented to a system, it is necessary to identify the best strategy to find the
answer using the existing data structures. As a very simple example, let us suppose that we
have a B+-tree primary index on Name for the Student table and that we want to find all the
students whose Name comes after “Smith” in the alphabet: should the system use the primary
B+-tree index, or should it perform a sequential read of the file? Since the most interesting
optimization techniques have been studied for the relational data model, we shall assume that
a query is expressed in SQL, to specify what the user wants to get from the database.

As it has been shown, in SQL a query may be expressed in different ways. Since we do
not expect users to write their queries in a way that suggests the best strategy for finding the
answer, it is responsibility of the Query Manager module of the system to figure out how to
find the most efficient way to get the data the user wants.

Query processing is usually accomplished top-down in distinct phases, with each phase
solving a well-defined subproblem. First, the query is checked whether it is syntactically and
semantically correct and then it is transformed into a relational algebra query (i.e., the passage
from what the user wants to how to get the data goes through the relational algebra). Second,
logical transformations at the relational algebra level are applied to standardize and simplify
the query. An attempt is made to find an equivalent reformulation of the query that can
be more optimizable (e.g. elimination of subqueries and views). The next phase is to select a
detailed strategy to access the data, and also the algorithms to perform the necessary database
operations. The result of this process is the physical query plan: a tree of physical operators that
implement algorithms to execute the relational algebra operators.

6.6. Query Processing 85

Each relational algebra operator can be implemented using several algorithms (physical oper-
ators). For example, the join of two tables R ./

pk=fk
S, with pk the primary key of R and fk the

foreign key of S for R, can be implemented using one of the following algorithms, among
others:
– nested loops:

for each r ∈ R do
for each s ∈ S do

if r.pk = s.fk then add < r, s > to result;

– page nested loops:

for each page pr of R do
for each page ps of S do

for each r ∈ pr do
for each s ∈ ps with r.pk = s.fk do

add < r, s > to result;

– index nested loops:

for each r ∈ R do
for each s ∈ S with s.fk = r.pk do

add < r, s > to result;

where for each record r ∈ R the records s ∈ S with s.fk = r.pk are retrieved using the index
on the join attribute s.fk of S.

– merge-join. The operator requires that
– the join is an equi-join;
– the records of the operands are sorted on the join attributes;
– the join attribute of the external operand R is a primary key.

Under these assumptions, the records r ∈ R and s ∈ S of the join are found by scanning the
two tables once as follows.

while there is a record r ∈ R and a record s ∈ S do
if r.pk = s.fk
then (add < r, s > to result;

let s the next record in S)
else let r the next record in R;

Each physical operator is implemented as an iterator, an object with the following public meth-
ods implemented using the operators on storage structures and the access methods provided
by the storage engine:
1. open, to initialize the process of getting records,
2. next, to return the next record in the result and adjust data structures to allow subsequent

records to be obtained. In getting the next record of its result it usually call the next method
on its arguments,

3. isDone, to signal if there are no more records to be produced,
4. close, to end the iteration after all records have been obtained.
Figure 6.4 shows a possible set of physical operators.

6.6. Query Processing 86

Logical Operator Physical Operators Description

Table TableScan Full table scan of R.
(R)

IndexScan Ordered scan of R on the index
R (R, I) I attributes.

SortScan Sorted scan of R on the attributes {Ai}.
(R, {Ai})

Projection Project Projection of O records
πb (O, {Ai}) without duplicate elimination.

Duplicate Distinct Duplicate elimination from O records
elmination (O) sorted on the attributes {Ai}.

δ HashDistinct Duplicate elimination from O records.
(O)

Sort Sort Sort O records on {Ai}.
τ (O, {Ai})

Selection Filter Selection of the O records
(O,ψ) that satisfy the condition ψ.

IndexFilter Selection of the R records using the index
σ (R, I,ψ) I defined on the attributes in ψ.

IndexOnlyFilter Selection of the R records attributes available
(R, I, {Ai},ψ) in the index I and used in ψ,

without any access to R.
The attributes {Ai} are a subset of those in I.

Grouping GroupBy Grouping of O records sorted on the attributes
(O, {Ai}, {fi}) {Ai} using the aggregate functions in {fi}.

The operator returns records with attributes
γ Ai and the aggregate functions in {fi},

sorted on the attributes {Ai}.

HashGroupBy Grouping of O records on the attributes
(O, {Ai}, {fi}) {Ai} using the aggregate functions in {fi}.

Join NestedLoop Nested-loop join.
(OE,OI,ψJ)

PageNestedLoop Page nested-loop join.
(OE,OI,ψJ)

./ IndexNestedLoop Index nested-loop join.
(OE,OI,ψJ) OI uses an index on the join attributes.

MergeJoin Merge join join.
(OE,OI,ψJ) The operand OE and OI records

are sorted on join attributes.
The external operand join attribute is a key.

Set Operators Union, Except, Intersect Set operations with the operand records
(OE,OI) sorted and without duplicates.

∪, −, ∩
UnionAll(OE,OI) Union without duplicates elimination.

Figure 6.4: Examples of physical operators for query plans

6.6. Query Processing 87

Each DBMS has its own physical operators and for convenience those of the JRS system will
be used, which are simpler than those of commercial systems and, being JRS available for
free at http://fondamentidibasididati.it, it can be easily used to practice with the use of SQL, the
visualization of logical and physical trees and the physical optimization of queries.1

Let us consider some examples of logical and physical plans for SQL queries on the database
with relations R(RPk,Ra,Rb,Rc) and S(SPk,SFk,Sa), with all attributes of type integer.

Example 6.1

SELECT Rc, Ra
FROM R
WHERE Ra = 100 AND Rc > 200;

If there are not indexes, a possible physical query plan is

πbRc, Ra

σRa= 100 AND Rc> 200

R

Project
({Rc,Ra})

Filter
(Ra= 100 AND Rc> 200)

TableScan
(R)

If there is an index on Ra, a possible physical query plan is

Project
({Rc,Ra})

Filter
(Rc> 200)

IndexFilter
(R, IdxRa, Ra= 100)

Example 6.2

SELECT DISTINCT Ra
FROM Rn
ORDER BY Ra;

1. JRS (Java Relational System) was developed in Java for educational purposes at the Computer Science Depart-
ment of the University of Pisa, by the author, the colleagues G. Ghelli and R. Orsini, and the students Lorenzo
Brandimarte, Leonardo Candela, Giovanna Colucci, Patrizia Dedato, Stefano Fantechi, Stefano Dinelli, Martina
Filippeschi, Simone Marchi, Cinzia Partigliani, Marco Sbaffi and Ciro Valisena.

6.6. Query Processing 88

If there are not indexes, possible physical query plans are

τRa

δ

πbRa

R

Distinct

Project
({Ra})

SortScan
(R, {Ra})

Distinct

Sort
({Ra})

Project
({Ra})

TableScan
(R)

Sort
({Ra})

HashDistinct

Project
({Ra})

TableScan
(R)

If there is an index on Ra, a possible physical query plan is

Distinct

IndexOnlyScan
(R, IdxRa, {Ra})

Example 6.3

SELECT Ra, Sa
FROM R, S
WHERE RPk = SFk AND Ra > 100 AND Sa > 200;

If there are not indexes, a possible physical query plan is

πbRa, Sa

./
RPk = SFk

σRa> 100

R

σSa> 200

S

Project
({Ra,Sa})

NestedLoop
(RPk=SFk)

Filter
(Ra> 100)

TableScan
(R)

Filter
(Sa> 200)

TableScan
(S)

Let us assume that there are two indexes on Ra and on SFk, and to execute the join with
the IndexNestedLoop:

6.6. Query Processing 89

Project
({Ra,Sa})

IndexNestedLoop
(RPk=SFk)

IndexFilter
(R, IdxRa, Ra> 100)

Filter
(Sa> 200)

IndexFilter
(S, IdxSFk, SFk=RPk)

If there is also an index on RPk, an IndexNestedLoop can be used with R as internal operand:

Project
({Ra,Sa})

IndexNestedLoop
(RPk=SFk)

Filter
(Sa> 200)

TableScan
(S)

Filter
(Ra> 100)

IndexFilter
(R, IdxRPk, RPk=SFk)

If the relations are sorted on the join attributes, the join can be execute with the MergeJoin
as follows:

Project
({Ra,Sa})

MergeJoin
(RPk=SFk)

Filter
(Ra> 100)

TableScan
(R)

Filter
(Sa> 200)

TableScan
(S)

6.6. Query Processing 90

Example 6.4

SELECT Ra, COUNT(∗)
FROM R
WHERE Ra > 100
GROUP BY Ra
HAVING SUM(Rc) > 200;

πbRa, COUNT(∗)

σSUM(Rc)> 200

RaγCOUNT(∗), SUM(Rc)

σRa> 100

R

Project
({Ra,COUNT(∗)})

Filter
(SUM(Rc)> 200)

GroupBy
({Ra},{COUNT(∗),SUM(Rc)})

Sort
({Ra})

Filter
(Ra> 100)

TableScan
(R)

Project
({Ra,COUNT(∗)})

Filter
(SUM(Rc)> 200)

HashGroupBy
({Ra},{COUNT(∗),SUM(Rc)})

Filter
(Ra> 100)

TableScan
(R)

Note that (a) the aggregation functions of both γ and GroupBy are those different that
appear in the SELECT and in the HAVING clauses, (b) the condition of HAVING clause becomes
a Filter on the GroupBy and (c) a Project is required to produce the final result.

Example 6.5

SELECT Ra AS O
FROM R
WHERE Ra < 100

UNION
SELECT Sa AS O
FROM S
WHERE Sa > 200;

6.7. Concurrency and Recovery 91

∪

δ

πbRa AS O

σRa< 100

R

δ

πbSa AS O

σSa> 200

S

Union

Distinct

Sort
({O})

Project
({Ra AS O})

Filter
(Ra< 100)

TableScan
(R)

Distinct

Sort
({O})

Project
({Sa AS O})

Filter
(Sa> 200)

TableScan
(S)

6.7 Concurrency and Recovery

The aim of this section is to provide a very brief and schematic introduction to concurrency
control, i.e. the ways in which a DBMS ensures that simultaneously executed transactions
do not interfere with each other, and also to present the recovery algorithms used to protect
the database from transaction, system, and media failures. Much research has been done on
these topics and in the bibliographic notes we refer the interested reader to some of the most
relevant literature.

6.7.1 Strict Two-Phase Locking

When two or more transactions execute concurrently, their database operations are interleaved,
that is, operations from one program can execute in between operations from another pro-
gram. This interleaving can cause programs to produce unpredictable results, or to interfere.
One way to avoid interference problems is not to allow transactions to be interleaved in any
way, and to adopt serial execution. An execution is said to be serial if, for every pair of trans-
actions, all the operations of one transaction execute before any of the operations of the other.
However, only in the simplest systems is serial execution a practical way to avoid interference.
In general, since concurrency means interleaved executions, it is sufficient that the system
guarantees that the resulting execution will have the same effect as serial ones. Such execu-
tions are called serializable.

� Definition 6.4
An execution of a set of transactions is serializable if its effect is exactly the same as a
serial execution of the transactions.

The DBMS module that controls the concurrent execution of transactions is called the sched-
uler. There are many scheduling algorithms to obtain serializability; a very simple one is the

6.7. Concurrency and Recovery 92

strict two-phase locking protocol (strict 2PL). This is the most popular protocol of this type in
commercial products.

The idea behind locking is intuitively simple: each data item used by a transaction has a
lock associated with it, a read (shared) or a write (exclusive) lock, and strict 2PL protocol follows
two rules:
1. If a transaction wants to read (respectively, write) a data item, it first request a shared (re-

spectively, exclusive) lock on the data item.
Before a transaction Ti can access a data item, the scheduler first examines the lock associ-
ated with the data item. If no other transaction holds the lock, then the data item is locked.
If, however, another transaction Tj holds a lock in conflict (two actions on the same data item
conflict if at least one of them is a write), then Ti must wait until Tj releases it. In some
systems, whole files are locked while a transaction is accessing them, but this solution does
not allow sufficient concurrency, i.e. the lock granularity is too coarse. Record-level locking
or page-level locking is used instead in large time-sharing systems.

2. All locks held by a transaction are released when the transaction is completed.
A strict two-phase locking protocol is so named because in locking operations there is a phase
in which the transaction acquires all the looks it needs; when the transaction is completed,
then it enters into its unlocking phase. Request to acquire and release locks are usually auto-
matically inserted into transactions by the DBMS.

The following theorem shows the importance of strict 2PL.

� Theorem 6.1
A strict 2PL protocol ensures serializability.

Two-phase locking is simple, but the scheduler needs a strategy to detect deadlocks. Consider
a situation in which transaction Ti has locked item A and needs a lock on item B, while at the
same time transaction Tj has locked item B and now needs a lock on item A. Deadlock occurs
because neither transaction can proceed. A strategy to detect deadlocks uses a dependency
graph indicating which transactions are waiting until which others are completed. A cycle in
the graph indicates deadlock. Another strategy uses timeout: if a transaction has been waiting
too long for a lock, the the scheduler simply presumes that deadlock has occurred and aborts
the transaction.

6.7.2 Recovery Algorithms

Unpredictable results can also occur after a failure. For example, suppose that the system
failed while transaction T1 is transferring money from John’s checking account into John’s
saving account; in particular suppose failure occurred when T1 has taken the money out of
the checking account, but not yet deposited it in the savings account.

To ensure that the database is protected against failures, the system must be able to “undo”
operations made by aborted transactions. To do this, the system keeps a log on the disk which
contains the information necessary to reconstruct the most recent database state before the
occurrence of a failure. For each write in the database, the log will contain the identifier of
the transaction that performed the write, a copy of the newly written page (called the after-
image), and a copy of the page in the database that was overwritten by the write (called the
before-image). Recovery algorithms differ in the information they store in the log, in how they

6.7. Concurrency and Recovery 93

structure that information and, more important, in the time at which they write pages in the
stable database.

We say that a recovery algorithm requires an undo if an update of some uncommitted trans-
action is recordered in the stable database. Should a transaction or a system failure occur, the
recovery algorithm must undo the updates by copying the before-image of the page from the
log to the stable database.

We say that a recovery algorithm requires redo if a transaction is committed before all of its
updates are installed in the stable database. Should a system failure occur after the transac-
tion commits but before the updates are installed in the stable database, the recovery algo-
rithm must redo the updates by copying the after-image of the page from the log to the stable
database.

Thus, we can classify recovery algorithms into four categories: (1) those that require both
undo and redo; (2) those that require undo but not redo; (3) those that require redo but not
undo; and (4) those that require neither undo nor redo. Every recovery algorithm must observe
two fundamental rules: the commit rule and the log-ahead rule.

The commit rule, called also the redo rule, requires that before a transaction can commit, the
after-images produced by the transaction must be in stable storage (e.g., in the stable database
or log). If this rule is not followed, a system failure shortly after the transaction commit will
lose the last after-images, making it impossible to redo the transaction.

The log-ahead rule, called also the undo rule, requires that if a database page is modified before
the end of a transaction, its before-image must have been previously recorded in the log. This
rule enables a transaction to be undone in case of abort by reconstituting the before-image
from the log.

We shall describe just one category of recovery algorithms: the No-Undo/Redo Algorithm. The
algorithm uses three lists of transactions that are assumed persistent (they can be included
in the log): the list of active transactions, the list of aborted transactions, and the list of committed
transactions. We assume that no locks are released by a transaction until after a commit or abort
has been processed. This ensures that transactions do not read uncommitted data. For sim-
plicity, we ignore the recovering from media failure situations2. Here is how the No-Undo/Redo
Algorithm works.

To perform a write operation, the system enters the transaction identifier, the data-item
identifier, and the new value to be written (after-image) in the log. Therefore a “write” does
not actually write into the database, it just creates an entry in the log.

To perform a read, the system will get the value from the database if the transaction has not
previously written the same item, otherwise the after-image from the log is used.

To commit, the system (a) adds the transaction identifier to the commit list, (b) writes the
after-images from the log to the database, and (c) takes off the active list the transaction
identifier.

To abort, the system adds the transaction identifier to the abort list and removes it from the
active list. Since the database has not been changed, nothing further needs to be done (this is
the no-undo part of the algorithm).

To restart after a system failure, the log is read backwards. For each transaction whose
identifier is in the list of active transactions, the transaction will be committed if the identifier

2. Recovery algorithms for media failure generally require redo. Most such algorithms keep a stable copy of the
database, called the backup copy, which is almost certainly out-of-date. So the recovery algorithm must redo
committed updates that occurred after the backup was created.

6.8. Exercises 94

is also in the list of committed transactions, otherwise it will be aborted.
With this algorithm, the pages written by a transaction are not written into the database

until after the transaction commits. Thus, the algorithm does not have to undo a write, but the
restart may require to redo the write by copying the after-image of the page from the log to
the database.

6.8 Exercises

1. Say which of the following statements is true or false and justify the answer:
1) The following physical plans for the query SELECT A FROM R ORDER BY A are not

equivalent:

Sort
({A})

Project
({A})

TableScan
(R)

Project
({A})

SortScan
(R, {A})

2) Logical operator and physical operator are synonyms.
3) Each SQL query has multiple logical trees.
4) Each logical tree has multiple physical trees.
5) Managing concurrency with data blocking does not create deadlocks.
6) With the undo-redo method, no data modified by a transaction can be carried over to the

BD before the corresponding log record is written in the permanent memory.
7) With the redo method, all changes to a T must be reflected in the BD before the commit

record is written in the log.
2. Give a logical and physical query plans for the following queries based on the database

schema (the attributes of the primary key are underlined and those of the foreign key are
marked with an asterisk).
For a physical query plan consider two cases: without using indexes and using indexes
that you believe are useful to speed-up the query.

Departments(Number, Name, Location)
Employees(SSN, Name, BirthYear, Sex, AssighedTo*)
Managers(SSN, StartYear, Directs*)
Projects(PNumber, PName, ManagedBy*)
WorksOn(Project*, Employee*, TimeShare)

1) SELECT DISTINCT E.SSN, E.Name, P.TimeShare
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare > 50
ORDER BY E.SSN;

6.8. Exercises 95

2) SELECT E.SSN, E.Name, COUNT(*)
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare > 50
GROUP BY E.SSN, E.Name;

3) SELECT E.Name, M.StartTime, D.Name, D.Location
FROM Managers M, Employees E, Departments D
WHERE M.SSN = E.SSN AND M.Directs = D.Number AND D.Location = ’Pisa’
ORDER BY E.Name;

4) SELECT E.SSN, E.Name, COUNT(*), SUM(P.Impegno)
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare = 100
GROUP BY E.SSN, E.Name
HAVING COUNT(*) > 2
ORDER BY E.Name;

6.8. Exercises 96

Chapter 7

FINAL REMARKS

7.1 Introduction

We have discussed the major aspects of database systems: a) the modeling of the informa-
tion about the world that the database represents; b) the languages and facilities provided
by database management systems; c) the formalism, theory, and algorithms used in relational
database design; d) the data structures to store and access efficiently sets of data and relation-
ships between them. In addition, we have presented some of the techniques used in database
management systems to process and optimize queries specified in a declarative language, and
to implement concurrency control and recovery. The evolution of database systems is recalled
in Figure 7.1.

Before leaving this tutorial, we would like to mention three other topics that, for reasons
of space, it has been impossible to consider: distributed database systems, information retrieval
systems, and deductive databases.

The main objective of a distributed DBMS is to provide the capabilities to access data, which
are physically located at several different sites, without needing to know at which site a par-
ticular piece of data is stored. This property is known as location transparency, i.e. to the user a
distributed DBMS will appear exactly the same as a centralized DBMS. Location transparency
permits data to be moved between sites without affecting existing applications. A typical ap-
plication in which this type of situation is found is a bank in which checking accounts are
stored at the branch nearest to where the account holders live, while at the same time it must
be possible to access these accounts from automated teller machines located at all branches of
the bank.

Distributed systems are usually made up of similar relational DBMSs, and will also provide
facilities for distributed query optimization, distributed concurrency control, and distributed
transaction management. In addition, such systems must cope with multiple copies of the
same data at different sites, ensuring their mutual consistency at all times.

Examples of such systems are the distributed versions of System R and INGRES, renamed
respectively System R∗ and INGRES-STAR. Research is still under way on how heterogeneous
DBMSs can share data.

Information retrieval systems (IRSs) deal with document representation, storage, and access.
Since the input information will include the natural language text of documents or of docu-
ment abstracts, these systems are also known as document or text retrieval systems. The field of
information retrieval has studied the problem of searching collections of text documents since
the 1950s and developed independently of database field. The Web has made the document
search an everyday operation for most people and led to renewed research on the topic.

The goal of an IRS is to find documents that contain information which meets the specifics
of a search request. Since the documents stored will generally be on a range of topics and be
written by different authors, and users are seeking particular information, they will find some

7.1. Introduction 98

Year Result

1962 C. Bachman develops the Integrated Data Management System (IDMS) network
DBMS.

1966 Indexed Sequential Access Method (ISAM) is developed at IBM.
1968 IBM releases the Information Management System (IMS) hierarchical DBMS, de-

signed to manage large bills of material for the construction of the spacecraft for
the Apollo program.

1970 E. F. Codd introduces the Relational Model along with the Relational Algebra and
Relational Calculus.

1971 CODASYL publishes the Data Base Task Group (DBTG) report on the network
model.

1972 R. Bayer and E. McCreight publish paper on B-tree, the basic indexing mechanism
in modern database systems.

1972 Boyce-Codd normal form for database design is introduced.
1973 C. Bachman receives the Turing Award for his work on network databases.
1974 The University of California at Berkeley distributes the Ingres DBMS using the

QUEL query language.
1974 The theory of functional dependencies and relational normalization theory taking

shapes.
1975 IBM develops System R, an experimental relational DBMS that introduces the

Structured Query Language (SEQUEL, later called SQL).
1975 IBM develops Query By Example (QBE), the first graphical query language.
1976 Eswaran, Gray, Lorie and Traiger define isolation levels, serializability, and two-

phase locking.
1976 P. Chen introduces the Entity-Relationship model.
1977 A. Makinouchi describes a nested relational model, a precursor of the object-

relational model.
1977 Relational Software Inc., later to become Oracle Corporation, is founded and is

the first company to release a relational DBMS based on the IBM System R model
and utilizing SQL.

1979 H. Gallaire and J. Minker introduce logic-based database, also known as deductive
databases.

1981 E. Codd receives the Turing Award for his contributions to database theory.
1983 IBM releases the DB2 relational DBMS.
1985 Active databases are introduced.
1985 Object-oriented and object-relational databases are introduced.
1986 Ingres releases IngresStar, the first distributed relational system.
1986 LDL, a logical-based database language is implemented at MCC Corporation.
1986 GemStone releases the first object-oriented DBMS.
1992 Open Database Connectivity (ODBC) is developed allowing machines to traspar-

ently communicate with multiple DBMSs.
1995 Datacube OLAP operators are introduced.
1995 The semi-structured data model is developed.
1998 Unified Modeling Language (UML) is standardized as a modeling tools for soft-

ware and data design.
1998 J. Gray receives the Turing Award for his contributions to the fields of databases

and transaction processing.
1998 eXtensible Markup Language (XML) is developed as a standard for information

interchange, particularly among DBMS.
1999 The SQL3 standard is published.

Figure 7.1: The time table of database principles and applications

7.2. Bibliographic Notes 99

of the documents retrieved useful, or relevant, and others not. The problem is how should a
collection of documents be organized so that a user can find all the relevant documents and
only those.

Another issue to which much attention is being given is how traditional data processing
records can be managed together with text data, graphic data, such as drawings and pictures,
and semistructured data and how these new requirements will affect the DBMS architecture.

Finally, the objective of deductive databases is the integration of logic programming and
databases. In this approach, a database schema, usually a relational one, constraints and
queries are formulated in a subset of first-order logic formulas, called Horn clauses, using
PROLOG as the logic programming language. A query is considered as a theorem to be
demonstrated, and the main problem in deductive DBMSs is the implementation of inference
methods that can be executed efficiently. Several alternative architectures have been proposed
for extending current relational DBMSs with deductive capabilities, and references on this
topic appear in the bibliographic notes.

7.2 Bibliographic Notes

Even a brief bibliography on database systems would contain hundreds of entries. The fol-
lowing list is intended only to indicate some of the most relevant publications which discuss
the major topics presented in this report. Most of the references cited include extensive bibli-
ographies, which can be used by those wishing to explore a particular topic in depth.

Database: The Designer Perspective

The growing use of computerized information systems based on database technology has
led to greater attention being paid to database design methodologies and automated tools to
support them. Examples of such methodologies and tools are described in [Batini et al., 1992],
[Maciaszek, 2001] and [Teorey, 1990].

The entity-relationship model was the first example of a data model for conceptual modeling,
and it has found wide acceptance in database design [Chen, 1976]. In [Hull and King, 1987]
we have surveys of the data models for conceptual modeling considered by many to be the
most influential ones.

DBMS: The User’s Perspective

[Albano et al., 2005] [Date, 1995] [Elmasri and Navathe, 2000] [O’Neil and O’Neil, 2000] [Ra-
makrishnan and Gehrke, 2003] [Silberschatz et al., 2010] [Ullman and Widom, 1997] [van der
Lans, 1993] [Kifer et al., 2006] and [Celko, 1996] are general sources for a discussion of the
objectives and functions of DBMSs, and for a presentation of classical data models, data ma-
nipulation languages and SQL.

The theory of relational databases is presented in all the previous books and in detail in
[Maier, 1983] [Abiteboul et al., 1995]. The proposal of the relational data model and the first
discussion of relational database design theory appeared in [Codd, 1970].

Extensions to the relational data model to support some aspects of object orientation have
been made recently. Examples of this approach are extension of the relational data model with
the support of abstract data types and hierarchical objects [Abiteboul et al., 1995].

7.2. Bibliographic Notes 100

DBMS: The System Perspective

There are several papers describing the overall system structure of specific DBMS. For exam-
ple, Ashtrahan et al. [Ashtrahan et al., 1976] discusses System R. Chamberlin et al. [Blasgen
et al., 1981] reviews System R in retrospect. Stonebraker et al. [Stonebraker et al., 1976] de-
scribes the implementation of Ingres, and Stonebraker [Stonebraker, 1980] reviews Ingres in
retrospect.

Basic file organizations are discussed in [Albano, 2001] [Ramakrishnan and Gehrke, 2003]
[Garcia-Molina et al., 1999]. A discussion of several dynamic hashing techniques is reported
in [Enbody and Du, 1988]. B-tree indexes were presented in [Bayer and Creight, 1972].

Query optimization is discussed in depth in [Albano, 2001] [Ramakrishnan and Gehrke,
2003] [Garcia-Molina et al., 1999] but the topic is discussed in all text books on DBMSs. The
seminal paper by Selinger et al. [Selinger et al., 1979] describes access path selection in Sys-
tem R.

The main source for concurrency and recovery is the excellent book [Bernstein et al., 1987],
but the topic is discussed in all text books on DBMSs, and in particular [Gray and Reuter,
1997].

The major issues concerning distributed database systems are discussed in [Ceri and Pela-
gatti, 1984] and [Ozsu and Valduriez, 1991]. Standard references for information retrieval sys-
tems are [Salton, 1989] [Van Rijsbergen, 1979]. Deductive databases are discussed in [Ullman
and Widom, 1997]. A book dedicated to deductive databases is [Ceri et al., 1990].

Advanced Topics

Object database languages are discussed in [Albano et al., 1997] [Bancilhon et al., 1992] [Ull-
man and Widom, 1997] [Elmasri and Navathe, 2000], and examples of approaches to the
design of object DBMSs appear in [Kim, 1990] [Kim, 1995] [Cattel, 1994a] [Cattel, 1994b]. The
definition of the Galileo language is given in [Albano et al., 1985] and [Albano et al., 2000].
SQL:1999 is discussed in [Melton and Simon, 2000]. Web and databases are discussed in [Mor-
rison and Morrison, 2000]. An excellent reference that takes the database view information
processing on the Web and covers recent works on semistructured data, including XML, is
[Abiteboul et al., 2000].

Acknowledgments

I am very grateful to G. Ghelli, and R. Orsini who reviewed parts of the material and made
many valuable observations.

BIBLIOGRAPHY

Abiteboul, S., Buneman, P., and Suciu, D. (2000). Data on the web. From Relations to semistruc-
tured data and XML. Morgan Kaufmann Publishers, San Mateo, California. 100

Abiteboul, S., Hull, R., and Vianu, V. (1995). Database Foundations. Addison-Wesley, Reading,
Massachusetts. 99

Albano, A. (2001). Costruire sistemi per basi di dati. Addison-Wesley, Milano. 100
Albano, A., Antognoni, G., and Ghelli, G. (2000). View operations on objects with roles for

a statically typed database language. IEEE Transactions on Knowledge and Data Engineering,
12(4):548–567. 100

Albano, A., Cardelli, L., and Orsini, R. (1985). Galileo: A strongly typed, interactive conceptual
language. ACM Transactions on Database Systems, 10(2):230–260. Also in S.B. Zdonik and D.
Maier, editors, Readings in Object-Oriented Database Systems, Morgan Kaufmann Publishers,
Inc., San Mateo, California, 1990. 100

Albano, A., Ghelli, G., and Orsini, R. (1997). Basi di dati relazionali e a oggetti. Zanichelli,
Bologna. 100

Albano, A., Ghelli, G., and Orsini, R. (2005). Fondamenti di basi di dati. Zanichelli, Bologna. 99
Ashtrahan, M., Blasgen, M., Chamberlin, D., Eswaran, K., Gray, J., Griffiths, P., King, W., Lorie,

R., McJones, P., Mehl, J., Putzolu, G., Traiger, I., Wade, B., and Watson, V. (1976). System
R: A relational approach to data base management. ACM Transactions on Database Systems,
1(2):97–137. 100

Bancilhon, F., Delobel, C., and Kanellakis, P., editors (1992). Building an Object-oriented Database
System. The Story of O2. Morgan Kaufmann Publishers, San Mateo, California. 100

Batini, C., Ceri, S., and Navathe, S. (1992). Conceptual Database Design. An Entity-Relationship
Approach. The Benjamin/Cummings Publishing Company, Inc., Redwood City, California.
99

Bayer, R. and Creight, E. M. (1972). Organization and maintenance of large ordered indices.
Acta Informatica, 1(3):173–189. 100

Beeri, C. and Bernstein, P. (1979). Computational problems related to the design of normal
form relational schemas. ACM Transactions on Database Systems, 4(1):30–59. 41

Bernstein, P. (1976). Synthesizing third normal form relations from functional dependencies.
ACM Transactions on Database Systems, 1(4):277–298. 47

Bernstein, P., Goodman, N., and Hadzilacos, V. (1987). Concurrency Control and Recovery in
Database Systems. Addison Wesley Publishing Company, Menlo Park, California. 100

BIBLIOGRAPHY 102

Biskup, J., Dayal, U., and Bernstein, P. (1979). Synthesizing independent database schemas.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
143–152. 47

Blasgen, M., Chamberlin, D., Gray, J., King, W., Lindsay, B., Lorie, R., Mehl, J., Price, T., Putzolu,
G., Schkolnick, M., Selinger, P., Slutz, D., Traiger, I., Wade, B., and Yost, R. (1981). System R:
an architectural overview. IBM System Journal, 20(1):41–62. 100

Cattel, R. (1994a). Object Data Management. Object-Oriented and Extended Relational Database
Systems. Addison-Wesley, Reading, Massachusetts. 100

Cattel, R. (1994b). The Object Database Standard: ODMG-93. Morgan Kaufmann Publishers, San
Mateo, California. 100

Celko, J. (1996). Joe Celko’s SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann
Publishers, San Mateo, California. 99

Ceri, S., Gottlob, G., and Tanca, L. (1990). Logic Programming and Data Bases. Springer-Verlag,
Berlin. 100

Ceri, S. and Pelagatti, G. (1984). Distributed Databases: Principles and Systems. McGraw-Hill,
New York. 100

Chen, P. (1976). The entity-relationship model: Toward a unified view of data. ACM Transac-
tions on Database Systems, 1(1):9–36. 99

Codd, E. (1970). A relational model for large shared data banks. Communications of the ACM,
13(6):377–387. 39, 99

Date, C. (1995). An Introduction to Database Systems. Addison-Wesley, Reading, Massachusetts,
sixth edition. 99

Elmasri, R. and Navathe, S. (2000). Fundamentals of Database Systems. Addison-Wesley, Reading,
Massachusetts, third edition. 99, 100

Enbody, R. and Du, H. (1988). Dynamic hashing schemes. ACM Computing Surveys, 20(2):85–
113. 100

Garcia-Molina, H., Ullman, J. D., and Widom, J. (1999). Database System Implementation. Pren-
tice Hall, Inc., Englewood Cliffs, New Jersey. 100

Gray, J. and Reuter, A. (1997). Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Mateo, California, third edition. 100

Hull, R. and King, R. (1987). Semantic database modeling: Survey, applications and research
issues. ACM Computing Surveys, 19(3):201–260. 99

Kifer, M., Bernstein, A., and Lewis, P. M. (2006). Database Systems. An Application-Oriented
Approach. Pearson Addison Wesley, New York, second edition. 99

Kim, W. (1990). Introduction to Object Oriented Databases. MIT Press, Cambridge, Massachusetts.
100

Kim, W. (1995). Modern Database Systems. The Object Model, Interoperability, and Beyond.
Addison-Wesley, Reading, Massachusetts. 100

Maciaszek, L. A. (2001). Requirements Analysis and System Design. Developing Information Systems
with UML. Addison-Wesley, Reading, Massachusetts. 99

Maier, D. (1983). The Theory of Relational Databases. Computer Science Press, Rockville, Mary-
land. 49, 99

Melton, J. and Simon, A. R. (2000). SQL:1999 – Understanding Relational Language Components.
Morgan Kaufmann Publishers, San Mateo, California. 100

Morrison, M. and Morrison, J. (2000). Database-Driven Web Sites. Course Tecnology,, London.

BIBLIOGRAPHY 103

100
O’Neil, P. and O’Neil, E. (2000). Data Base. Principles, Programming, and Performance. Morgan

Kaufmann Publishers, San Mateo, California, second edition. 99
Ozsu, T. and Valduriez, P. (1991). Principles of Distributed Database Systems. Prentice Hall

International, Inc., London. 100
Ramakrishnan, R. and Gehrke, J. (2003). Database Management Systems. McGraw-Hill, New

York, third edition. 99, 100
Salton, G. (1989). Automatic Text Processing. The Transformation, Analysis, and Retrieval of Infor-

mation by Computer. Addison-Wesley, Reading, Massachusetts. 100
Selinger, P., Ashtrahan, M., Chamberlin, D., Lorie, R. A., and Price, T. (1979). Access path

selection in a relational database management system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 23–34, Boston, MA. 100

Silberschatz, A., Korth, H., and Sudarshan, S. (2010). Database System Concepts. McGraw-Hill,
New York, sixth edition. 99

Stonebraker, M. (1980). Retrospection on a database system. ACM Transactions on Database
Systems, 5(2):225–240. 100

Stonebraker, M., Wong, E., Kreps, P., and Held, G. (1976). The design and implementation of
Ingres. ACM Transactions on Database Systems, 1(3):189–222. 100

Teorey, T. (1990). Database Modeling and Design. The Entity-Relationship Approach. Morgan
Kaufmann Publishers, San Mateo, California. 99

Tsou, D. and Fischer, P. (1982). Decomposition of a relation scheme into Boyce-Codd Normal
Form. ACM SIGACT News, 14(3):23–29. 48

Ullman, J. (1989). Principles of Database and Knowledge Base Systems, volume I-II. Computer
Science Press, Rockville, Maryland. 45

Ullman, J. D. and Widom, J. (1997). A First Course in Database System. Prentice Hall, Inc.,
Englewood Cliffs, New Jersey. 99, 100

van der Lans, R. (1993). Introduction to SQL. Addison-Wesley, Reading, Massachusetts, second
edition. 99

Van Rijsbergen, C. (1979). Information Retrieval. Butterworths, London, second edition. 100

BIBLIOGRAPHY 104

SUBJECT INDEX

A
Abstract knowledge

integrity constraints, 9
relationship constraints, 9

C
Conceptual Modeling

data model, 11
object data model, 11
ODM, see Object Data Model
schema, 10

Concrete knowledge
collection, 9
entity, 9
entity set, 9
property, 9
relationship, 9

Concurrency and Recovery, 91
recovery algorithms, 92
strict two-phase locking, 91

D
Data Base Management System, see DBMS
Database, 54
DBMS, 54

architecture, 79
catalog, 58
concurrency and recovery, 91
functions, 54
physical query plan, 84
query processing, 84
storing database, 80, 82
transaction, 57

F
Failure

media, 58
system, 58
transaction, 58

I
Information Modeling

abstract knowledge, 9
communications, 10
concrete knowledge, 8
dynamics, 10
procedural knowledge, 10
symbolic model, 7

N
Normalization Theory

Armstrong’s axioms, 40
candidate key, 41
canonical cover of set of dependencies, 43
closure of a set of FDs, 40
cover of set of dependencies, 42
functional dependencies, 39
inference rules, 40
primary key, 41
prime attribute, 41
schema decomposition, 43
data preserving, 44
dependency preserving, 45
schema normalization, 46
3NF, 46
BCNF, 47
decomposition algorithm for BCNF, 48
multivalued dependencies, 48
synthesis algorithm for 3NF, 47
superkey, 41

105

Subject Index 106

O
Object Data Model

class, 12
class hierarchies, 15
extensional constraint, 15
intensional constraint, 15
subclass, 15
entity-relationship (ER) diagram, 18
inheritance, 14
object, 11
object type, 11
relationship, 13
type hierarchies, 14

P
Physical Query Plan, 84

operators, 85

R
Relational Data Model

relation key, 22
relation schema, 21
relation tuple, 22
relation tuple type, 21

Relational Algebra, 23
division, 27
equivalence rules, 28
generalized projection, 27
grouping, 27
join, 26
logical query plan, 28
natural join, 26
product, 24
project, 24
rename, 24
select, 24
set difference, 24
set intersection, 26
set union, 24

Relational Algebra on Multiset, 63
duplicate elimination, 64
multiset projection, 64
sort, 64
union, intersection and difference, 64

Relational Database Design, see Normaliza-
tion Theory

ODM-to-Relational Mapping, 32

S
Structured Query Language (SQL), 61, 63

access control, 62
application programs, 72
database definition, 61
grouping and aggregation, 66
modifying relation instances, 71
nested queries, 69
NULL values, 64
SELECT syntax and semantics, 65
universal quantifiers, 69

T
Transaction properties, 57

	Preliminaries
	Introduction

	I Database: The Designer Perspective
	Information Modeling
	Introduction
	What to Model
	How to Model
	ODM: An Object Data Model
	Object
	Object Type
	Class
	Relationship
	Inheritance and Type Hierarchies
	Class Hierarchies
	Exercises

	The Relational Data Model
	Introduction
	Relational Algebra
	Fundamental Operations
	Additional Operations
	Equivalence rules
	Exercises

	Relational Database Design: ODM-to-Relational Mapping
	Exercises

	Relational Database Design: Normalization Theory
	Functional Dependencies
	Inference Rules
	Closure of a Set of FDs
	Covers of Sets of Dependencies
	Schema Decomposition
	Dependency Preserving Decomposition
	Normalization Using Functional Dependencies
	Polynomial Algorithms to Normalize in 3NF and BCNF
	Multivalued Dependencies and Fourth Normal Form
	Exercises

	II DBMS: The User's Perspective
	Objectives of a DBMS
	Introduction
	Functions of a DBMS
	Separation of Data Description and Data Manipulation
	Database Languages
	Data Control
	A User-Accessible System Catalog
	Facilities for the Database Administrator

	SQL: A Relational Database Language
	Introduction
	The Data Definition Sublanguage
	Access Control
	The Query Sublanguage
	Aggregation over Data
	Nested Queries
	Queries that Require Universal Quantifiers
	Modifying Relation Instances
	Executing SQL Commands within Application Programs
	Exercises

	III DBMS: The System Perspective
	DBMS Architecture
	Introduction
	Storing Collections of Records
	Page Structure
	Table Organizations

	Heap and Sequential Organizations
	Primary Key Organizations
	Solutions for Relational DBMS
	Query Processing
	Concurrency and Recovery
	Exercises

	Final Remarks
	Introduction
	Bibliographic Notes

	Bibliography
	Subject Index

