
Databases Essentials
Solutions to Exercises

Antonio Albano
University of Pisa

Department of Computer Science
tonio.albano@gmail.com

Copyright c© 2015 by Antonio Albano

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that the
first page of each copy bears this notice and the full citation including
title and authors. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission from the copyright
owner.

February 13, 2015
Revision, December 1, 2020

2

CONTENTS

2 Information modeling 1
2.4 ODM: An Object Data Model . 1

3 The Relational Data Model 5
3.2 Relational Algebra . 5
3.3 Relational Database Design: ODM-to-Relational Mapping 10
3.4 Relational Database Design: Normalization Theory 13

5 SQL: A Relational database language 19

6 DBMS Architecture 29

CONTENTS ii

Chapter 2

INFORMATION MODELING

Section 2.4 ODM: An Object Data Model

2.4.7 Exercises
1. We would like to design a database for the following facts.

A train has a unique number and a driver. Trains are either local or express, but never both.
A station has a unique name and an address. Stations are either main or secondary, but
never both. Local trains stop at all stations. Express trains stop only at the main sta-
tions. Each stop of a train in a station has a duration. Design a conceptual schema for
the database.

Solution

Trains

Number :int �K�
Driver :string

Express Local

Stations

Name :string �K�
Address :string

Mains Secondary

LocalStops

Duration :int

ExpressStops

Duration :int

2. Design a conceptual schema for a database to keep track of actors and directors of films.
Each actor or director has a unique name, a birth year, and a nationality. An actor may be
also a director.
Each film has a title, the production year, the actors, a director, and a producer. Films
produced the same year have different titles.

2.4. ODM: An Object Data Model 2

Solution
Persons

SSN :int �K�
Name :string
BirthDate :date
Nationality :string

Actors Directors

Films

Producer :string
Title :string �K�
Year :int �K�

DirectsParticipates

3. Consider the following information about a manufacturing company’s parts and suppliers
database.
The database contains information about the way certain parts are manufactured out of
other parts: the subparts that are involved in the manufacture of a part, the number of
subparts used, the cost of manufacturing a part from its subparts, the mass of the part as
result of the subparts assemblage. The manufactured parts may themselves be subparts
in a further manufacturing process. In addition, certain information must be held on the
parts themselves: their unique code, name and, if they are imported (i.e., manufactured
externally), the supplier and the purchase cost.
Suppliers have an unique name, an address and several phones. Design a conceptual
schema for the database.

Solution
Parts

Code :int �K�
Name :string
Mass :real
Cost :real

Simple
Parts

Composit
Parts

Suppliers

Name :string �K�
Address :string
Phones :seq string

UsedIn

Quantity :int

SellingPrice

Price :real

2.4. ODM: An Object Data Model 3

4. We would like to design a database to maintain information for an administrator of con-
dominium (i.e. a block of flats).
Each condominium has a code (the key), an address and the number of the checking ac-
count where should be payed the supported expenses.
A condominium is made of flats, and we are interested in the flat code (the key), the
number rooms, the surface.
The flats can be rented to a tenant, and we are interested in tenants name, the social-security
numbers (the key), the telephones (more than one) and the balance, that is the amount that
tenant must pay for running expenses. Some rented flats can have been noticed, and in this
case we are interested in the date of the notice.
A flat can have several owners, and an owner can possess several flats. Of every owner
we are interested in the name, the social-security numbers (the key), the address, the tele-
phones (more than one) and the balance, that is the sum that the owner must pay for
supported expenses.
Maintenance expenses for the condominium are described by the code of identification, the
type (light, cleaning, elevator, etc), the date and the amount. The expenses are classified
as extraordinary, to be paid by owners, or as ordinary to be paid by tenants. Ordinary
expenses must be paid in one installment, while extraordinary expenses can be paid in
more installments, and for each of them it is necessary to remember the date and the
amount.

Solution

Expenses

Code :int �K�
Date :date
Amount :real
Type :string

Extraordinary Ordinary

Installments

Amount :real
Date :date

Condominium

CondCode :int �K�
NAcct :int
Address :string

Flats

FlatCode :int �K�
RoomsNo :int
Surface :real

RentedFlats

NoticedFlats

Date :date

Persons

SSN :int �K�
Name :string
Phones :seq string

Tenants

Balance :real

Owners

Address :string
Balance :real

BePaidBy

PayedByInstallmentOf

RentedBy

OwnedBy

MadeOf

ExpenseOf

2.4. ODM: An Object Data Model 4

5. Design a conceptual schema for a Company database to keep track of a company’s em-
ployees, departments, and projects.
The company is organized into departments. Each department has a unique name, a unique
number, a location, and a manager who is one of its employees. We keep track of the start
year when the employee began managing the department.
A department controls a number of projects, each of which has a name and a unique
number.
An employee has a name, a unique social security number, an address, a salary, a sex (m or
f), and a birth year. An employee is assigned to one department but may work on several
projects, which are not necessarily controlled by the same department. We keep track of
the percent-time that an employee works on each project. We also keep track of the direct
supervisor of each employee, who belong to the same department, and the start year when
the employee began acting as supervisor. We want to keep track of the dependents of each
employee for insurance purposes. We keep each dependent’s name, sex, birth year, and
relationship (spouse or child or other) to the employee (assume that only one parent works
for the company). We are not interested in information about dependents once the parent
leaves the company.

Solution
Employees

SSN :int �K�
Name :string
Sex :(M; F)
BirthYear :int
Salary :int
Dependents :seq [Name :string

Sex :(M; F)
BirthYear :int
Relationship :string

]

Managers

StartYear :int
Subordinates Supervisors

StartYear :int

Department

Number :int �K�
Name :string
Location :string

Projects

PNumber :int �K�
PName :string

WorksOn
PercentTime :int

AssignedTo

Directs SupervisedBy

ManagedBy

Chapter 3

THE RELATIONAL DATA MODEL

Section 3.2 Relational Algebra

3.2.4 Exercises

1. Prove the following properties:

a) σφ∧ψ(E) = σφ(E)∩σψ(E);

Solution
We prove each property E1 = E2 by showing how, for each ennuple t, you have
t ∈ E1 ⇔ t ∈ E2. We take advantage of the following properties, which derive
immediately from definition of relational operators.

t∈σφ(E) ⇔ t∈E ∧ φ(t)

t∈πX(E) ⇔ ∃t ′ (t ′∈E ∧ t ′[X] = t)

t∈(E1
./
φ E2) ⇔ ∃t ′, t ′′ (t ′∈E1 ∧ t ′′∈E2 ∧ t ′ ◦ t ′′ = t ∧ φ(t))

t∈Xγf1(B1) AS C1, ..., fn(Bn) AS Cn(E)

⇔ ∃t ′ (t ′∈E∧
t = t ′[X]◦[C1 = f1({s[B1] | s∈E ∧ s[X] = t ′[X]})]

◦ . . .
◦[Cn = fn({s[Bn] | s∈E ∧ s[X] = t ′[X]})])

σφ∧ψ(E) = σφ(E)∩ σψ(E).
t∈σφ∧ψ(E)
⇔ t∈E ∧ φ(t) ∧ ψ(t)
⇔ (t∈E ∧ φ(t)) ∧ (t∈E ∧ ψ(t))
⇔ (t∈σφ(E)) ∧ (t∈σψ(E))
⇔ t∈(σφ(E)∩ σψ(E))

3.2. Relational Algebra 6

b) πX(σφ(E)) = σφ(πX(E)), if φ uses only attributes in X;

Solution
πX(σφ(E)) = σφ(πX(E)), if φ uses only attributes in X;
t∈πX(σφ(E))
⇔ ∃t ′ (t ′∈σφ(E) ∧ t ′[X] = t)
⇔ ∃t ′ (t ′∈E ∧ φ(t ′) ∧ t ′[X] = t)
⇔ (since φ only uses attributes in X)
∃t ′ (t ′∈E ∧ t ′[X] = t) ∧ φ(t)
⇔ t∈πX(E) ∧ φ(t)
⇔ t∈σφ(πX(E))

c) σφ(E1
./
φJ

E2) = σφ(E1)
./
φJ

E2, if φ uses only attributes of E1;

Solution

σφ(E1
./
φJ

E2) = σφ(E1)
./
φJ

E2, if φ uses only attributes of E1;

t∈σφ(E1
./
φJ
E2)

⇔ t∈(E1
./
φJ
E2) ∧ φ(t)

⇔ ∃t ′, t ′′ (t ′∈E1 ∧ t ′′∈E2 ∧ t ′ ◦ t ′′ = t ∧ φJ(t)) ∧ φ(t)
⇔ (since φ only uses attributes of E1)
∃t ′, t ′′ (t ′∈E1 ∧ φ(t ′) ∧ t ′′∈E2 ∧ t ′ ◦ t ′′ = t ∧ φJ(t))
⇔ ∃t ′, t ′′ (t ′∈σφ(E1) ∧ t ′′∈E2 ∧ t ′ ◦ t ′′ = t ∧ φJ(t))

⇔ t∈σφ(E1)
./
φJ
E2

d) σφ(AγF(E)) = AγF(σφ(E)), if φ uses only attributes in A.

Solution
We use [A = v] to denote an ennuple with a single attribute A with value v.
Let’s assume, for simplicity, that F contains only one expression f(B) AS C, and we
prove:
σφ(AγF(E)) = AγF(σφ(E)), if φ uses only attributes in A.
t∈σφ(AγF(E))
⇔ t∈(AγF(E)) ∧ φ(t)
⇔ ∃t ′ (t ′∈E

∧ t = t ′[A] ◦ [C = f({s[B] | s∈E ∧ s[A] = t ′[A]})]) ∧ φ(t)
⇔ ∃t ′ (t ′∈E ∧ φ(t)

3.2. Relational Algebra 7

∧ t = t ′[A] ◦ [C = f({s[B] | s∈E ∧ s[A] = t ′[A]})])
⇔ (since φ only uses attributes in A, and t[A] = t ′[A])
∃t ′ (t ′∈E ∧ φ(t ′)

∧ t = t ′[A] ◦ [C = f({s[B] | s∈E ∧ φ(s) ∧ s[A] = t ′[A]})])
⇔ ∃t ′ (t ′∈σφ(E)

∧ t = t ′[A] ◦ [C = f({s[B] | s∈σφ(E) ∧ s[A] = t ′[A]})])
⇔ t∈AγF(σφ(E))

2. Consider the following database schema (the attributes of the primary key are underlined
and those of the foreign key are marked with an asterisk)

Students(StudentNo, Name, City, BirthYear)
Exams(Subject, Candidate*, Grade, Date)

Write the logical query plan for the following queries:

a) Find the number of students who have passed the DA exam with grade 30.

Solution

γ
COUNT(∗) AS NoOfStudents

σGrade= 30 ∧ Subject= ‘DA ′

./
StudentNo = Candidate

Students Exams

3.2. Relational Algebra 8

b) Find the name and the student number of students who have passed 3 exams.

Solution
πName, StudentNo

σNoExams= 3

Name, StudentNoγCOUNT(∗) AS NoExams

./
StudentNo = Candidate

Students Exams

c) Find the name and the student number of students who have passed some exam.

Solution
πName, StudentNo

./
StudentNo = Candidate

Students Exams

d) Find the name and the student number of students who have not passed some exam.

Solution
−

πName, StudentNo

Students

πName, StudentNo

./
StudentNo = Candidate

Students Exams

3.2. Relational Algebra 9

e) Find the names of the students of Pisa who have done some exam and the number of
exams taken, sorted by number of exams.

Solution

τNoExams

πName, NoExams

NameγCOUNT(*) AS NoExams

σCity= ′Pisa ′

./
StudentNo = Candidate

Students Exams

3.3. Relational Database Design: ODM-to-Relational Mapping 10

Section 3.3 Relational Database Design: ODM-to-Relational Map-
ping

3.3.1 Exercise

Convert the following conceptual schemas to a relational database schema.

1. A solution to Exercise 2.4.7(3)

Solution

Parts

Code :int �K�
Name :string
Mass :real
Cost :real

Simple
Parts

Composit
Parts

Suppliers

Name :string �K�
Address :string
Phones :seq string

UsedIn

Quantity :int

SellingPrice

Price :real

Parts

Code :int�PK�
Name :string
Mass :real
Cost :real

SimpleParts

Code :int �PK�
�FK(Parts)�

Code

CompositParts

Code :int �PK�
�FK(Parts)�

Code

Suppliers

Name :string �PK�
Address :string

Phones

PhoneNo :string �PK�
Supplier :string �PK�

�FK(Suppliers)�

Supplier

UsedIn

Part :int �PK�
�FK(Parts)�

CompositPart :int �PK�
�FK(CompositParts)�

Quantity :int

Part

CompositPart

SellingPrice

Supplier :string �PK�
�FK(Suppliers)�

SimplePart :int �PK�
�FK(SimpleParts)�

Price :real

SimplePartSupplier

3.3. Relational Database Design: ODM-to-Relational Mapping 11

2. A solution to Exercise 2.4.7(4)

Solution

Expenses

Code :int �K�
Date :date
Amount :real
Type :string

Extraordinary Ordinary

Installments

Amount :real
Date :date

Condominium

CondCode :int �K�
NAcct :int
Address :string

Flats

FlatCode :int �K�
RoomsNo :int
Surface :real

RentedFlats

NoticedFlats

Date :date

Persons

SSN :int �K�
Name :string
Phones :seq string

Tenants

Balance :real

Owners

Address :string
Balance :real

BePaidBy

PayedByInstallmentOf

RentedBy

OwnedBy

MadeOf

ExpenseOf

Expenses

Code :int �PK�
ExpenseOf :int

�FK(Condominium)�
Date :date
Amount :real
Type :string

Extraordinary

Code :int �PK�
�FK(Expenses)�

Ordinary

Code :int �PK�
�FK(Expenses)�

PayedBy :int
�FK(Tenants)�

Installments

InstallmentOf :int
�FK(Extraordinary)�

BePayedBy :int
�FK(Owners)�

Amount :real
Date :date

Condominium

CondCode :int �PK�
NAcct :int
Address :string

Flats

FlatCode :int �PK�
FlatOf :int

�FK(Condominium)�
RoomsNo :int
Surface :real

RentedFlats

FlatCode :int �PK�
�FK(Flats)�

RentedBy :int
�FK(Tenants)�

NoticedFlats

FlatCode :int �PK�
�FK(RentedFlats)�

Date :date

Persons

SSN :int
�PK�

Name :string

FlatOwners

FlatCode :int �PK�
�FK(Flats)�

OwnedBy :int �PK�
�FK(Owners)�

PhoneNums

PhoneNum :string �PK�
SSN :int

�FK(Persons)�

Tenants

SSN :int �PK�
�FK(Persons)�

Balance :real

Owners

SSN :int �PK�
�FK(Persons)�

Address :string
Balance :real

OwnedBy

FlatCode

SSN

SSNSSN

FlatCode

FlatCode

BePayedBy

InstallmentOf

RentedBy

FlatOf

ExpenseOf

PayedBy

Code Code

3.3. Relational Database Design: ODM-to-Relational Mapping 12

3. A solution to Exercise 2.4.7(5)

Solution

Employees

SSN :int �K�
Name :string
Sex :(M; F)
BirthYear :int
Salary :int
Dependents :seq [Name :string

Sex :(M; F)
BirthYear :int
Relationship :string

]

Managers

StartYear :int
Subordinates Supervisors

StartYear :int

Department

Number :int �K�
Name :string
Location :string

Projects

PNumber :int �K�
PName :string

WorksOn
PercentTime :int

AssignedTo

Directs SupervisedBy

ManagedBy

Employees

SSN :int �PK�
Name :string
Sex :(M; F)
BirthYear :int
Salary :int
AssignedTo :int �FK(Departments)�

Managers

SSN :int �PK�
�FK(Employees)�

Directs :int �FK(Departments)�
StartYear :int

Subordinates

SSN :int �PK�
�FK(Employees)�

SupervisedBy :string
�FK(Supervisors)�

Supervisors

SSN :int �PK�
�FK(Employees)�

StartYear :int

WorksOn

Employee :int �PK�
�FK(Employees)�

Project :int �PK�
�FK(Projects)�

PercentTime :int

Projects

PNumber :int �PK�
PName :string
ManagedBy :int

�FK(Departments)�

Departments

Number :int �PK�
Name :string
Location :string

Dependents

HouseHolder :int �PK�
�FK(Employees)�

Name :string
Sex :(M; F)
BirthYear :int
Relationship :string

ManagedBy

SSN SSNSSN

SupervisedBy

Project

EmployeeHouseHolder

AssignedTo

Directs

3.4. Relational Database Design: Normalization Theory 13

Section 3.4 Relational Database Design: Normalization Theory

3.4.10 Exercises

1. Prove that for a schema R〈T , F〉, with F a canonical cover, if an attribute Ai does not appear
on the right side of any FD, then Ai belongs to every key of R.

Solution
Consider any Y such that A 6∈ Y. Looking at the operation of the slow closing algo-
rithm, we observe that A cannot belong to Y+, so A 6∈ Y implies that Y cannot be
superkey, and so Y can’t even be a key.

2. Prove that if a schema R〈T , F〉 has two attributes AB only, then it is in BCNF.

Solution
The only possible (non-trivial) FD’s are A→ B and B→ A. So, there are four possible
cases:

– No FD’s holds in R: the key is AB and R is in BCNF.
– Only A→ B holds: the key is A and R is in BCNF.
– Only B→ A holds: the key is B and R is in BCNF.
– Both A→ B and B→ A holds: A and B are keys and R is in BCNF.

Hence, every relation with two attributes is always in BCNF!

3. Prove that if a schema R〈T , F〉 is in 3NF, and all keys are made of one attributes, then it is
in BCNF. Hint: prove that for each X→ A ∈ F, X is a superkey.

Solution
Let us prove that for each X → A ∈ F, X is a superkey. Suppose by contradiction
that X → A and X is not superkey, then A is prime for the 3NF, and it is also a key:
A → T . From X → A and A → T it follows that X → T and therefore it is superkey
(contradiction).

4. For each of the following relational schemas R〈T , F〉, with F a canonical cover:

(a) R〈{A,B,C,D}, {A→ B,A→ C}〉
(b) R〈{A,B,C,D}, {AB→ C,C→ D,D→ A}〉
(c) R〈{A,B,C,D,E, F}, {A→ C,DE→ F,B→ D}〉
(d) R〈{A,B,C,D,E}, {AD→ B,CB→ A,DE→ A,A→ E}〉

3.4. Relational Database Design: Normalization Theory 14

do the following:

(a) Find all the keys of R,
(b) Indicate all the BCNF violations.
(c) Decompose the relation, as necessary, into collections of relations that are in BCNF. Say

if the decomposition is dependency preserving.
(d) Indicate all the 3NF violations.
(e) If the relation is not in 3FN, decompose it into collections of relations that are in 3NF

and are data preserving.

Solution

1. R〈{A,B,C,D}, {A→ B,A→ C}〉

(a) Find all the keys of R.
The attributes A and D never appear on the right-hand sides of the given FDs, so
they must be present in all the possibile keys.
Since AD+ = ABCD cover all the relation attributes, AD is the only key.

(b) Indicate all the BCNF violations.
A→ B and A→ C violate BCNF because the determinants are not keys.

(c) Decompose the relation, as necessary, into collections of relations that are in BCNF. Say if
the decomposition is dependency preserving.
Decomposition based on A→ B:
– R〈{A,B,C,D}, {A→ B,A→ C}〉
– R1〈{A,B}, {A→ B}〉,R2〈{A,C,D}, {A→ C}〉
– R1〈{A,B}, {A→ B}〉,R2〈{A,C}, {A→ C}〉,R3〈{A,D}, {}〉.

The dependencies are preserved.
Decomposition based on A→ C:
– R〈{A,B,C,D}, {A→ B,A→ C}〉
– R1〈{A,C}, {A→ C}〉,R2〈{A,B,D}, {A→ B}〉
– R1〈{A,C), {A→ C}〉,R2〈{A,B)}, {A→ B}〉,R3〈{A,D), {}〉

The dependencies are preserved.
(d) Indicate all the 3NF violations.

The schema is not in 3NF because in all the functional dependencies X→ H ∈ F, X
is not a key and H is not prime.

(e) If the relation is not in 3FN, decompose it into collections of relations that are in 3NF and
are data preserving.
The decomposition is:
R1〈{A,B,C}, {A→ B,C}〉,R2〈{A,D}, {}〉

3.4. Relational Database Design: Normalization Theory 15

2. R〈{A,B,C,D}, {AB→ C,C→ D,D→ A}〉

(a) Find all the keys of R.
The attribute B never appear on the right-hand sides of the given FDs, and so it
must be present in all the possibile keys.
B+ = B is not a key because does not cover all the relation attributes. Considering
for addition to B the attributes A C D, the possible keys are AB, BC, BD.

(b) Indicate all the BCNF violations.
C→ D and D→ A violates BCNF because the determinants are not keys.

(c) Decompose the relation, as necessary, into collections of relations that are in BCNF. Say if
the decomposition is dependency preserving.
Decomposition based on C→ D:
– R〈{A,B,C,D}, {AB→ C,C→ D,D→ A}〉
– R1〈{C,D}, {C→ D}〉,R2〈{A,B,C}, {AB→ C}〉

The decomposition is not dependency preserving (D→ A has been lost).
Decomposition based on D→ A:
– R〈{A,B,C,D}, {AB→ C,C→ D,D→ A}〉
– R1〈{A,D}, {D→ A}〉,R2〈{B,C,D}, {C→ D}〉
– R1〈{A,D}, {D→ A}〉,R3〈{C,D}, {C→ D}〉,R4〈{B,C}, {}〉

The decomposition is not dependency preserving (AB→ C has been lost).
(d) Indicate all the 3NF violations.

The schema is in 3NF because all the determined attributes in F are primes.

3.4. Relational Database Design: Normalization Theory 16

3. R〈{A,B,C,D,E, F}, {A→ C,DE→ F,B→ D}〉

(a) Find all the keys of R.
Since the attributes A, B and E never appear on the right-hand sides of the given
FD, then they must be included in all the possibile keys.
Since ABE+ = ABCDEF covers all the relation attributes, ABE is the only key.

(b) Indicate all the BCNF violations.
A→ C, B→ D and DE→ F violate BCNF because the determinants are not keys.

(c) Decompose the relation, as necessary, into collections of relations that are in BCNF. Say if
the decomposition is dependency preserving.
Decomposition based on A→ C:
– R〈{A,B,C,D,E, F}, {A→ C,DE→ F,B→ D}〉
– R1〈{A,C}, {A→ C}〉,R2〈{A,B,D,E, F}, {DE→ F,B→ D}〉
– R1〈{A,C}, {A→ C}〉,R3〈{D,E, F}, {DE→ F}〉,R4〈{A,B,D,E}, {B→ D}〉
– R1〈{A,C}, {A→ C}〉,R3〈{D,E, F}, {DE→ F}〉,R5〈{B,D}, {B→ D}〉,
R6〈{A,B,E}, {}〉

The decomposition is dependency preserving.
Another possible decomposition based on A→ C:
– R〈{A,B,C,D,E, F}, {A→ C,DE→ F,B→ D}〉
– R1〈{A,C}, {A→ C}〉,R2〈{A,B,D,E, F}, {DE→ F,B→ D}〉
– R1〈{A,C}, {A→ C}〉,R3〈{B,D}, {B→ D}〉,R4〈{A,B,E, F}, {BE→ F}〉
– R1〈{A,C}, {A→ C}〉,R3〈{B,D}, {B→ D}〉,R5〈{B,E, F}, {BE→ F}〉,
R6〈{A,B,E}, {}〉

The decomposition is not dependency preserving (DE→ F has been lost).
(d) Indicate all the 3NF violations.

The schema is not in 3NF because in all the functional dependencies X→ H ∈ F, X
is not a key and H is not prime.

(e) If the relation is not in 3FN, decompose it into collections of relations that are in 3NF and
are data preserving.
– from A→ C follows R1(A,C)
– from DE→ F follows R2(D,E, F)
– from B→ D follows R3(B,D)

– and R4(A,B,E) is added to have a decomposition data and dependency preserv-
ing.

3.4. Relational Database Design: Normalization Theory 17

4. R〈{A,B,C,D,E}, {AD→ B,CB→ A,DE→ A,A→ E}〉

(a) Find all the keys of R.
Since the attributes C and D never appear on the right-hand sides of the given FD,
then they must be included in all the possibile keys.
Since CD+ = CD is not a key because does not cover all the relation attributes, the
possible keys are ACD, BCD, CDE.

(b) Indicate all the BCNF violations.
AD → B, CB → A, DE → A, A → E violate BCNF because the determinants are
not keys.

(c) Decompose the relation, as necessary, into collections of relations that are in BCNF. Say if
the decomposition is dependency preserving.
Decomposition based on AD→ B:
– R〈{A,B,C,D,E}, {AD→ B,CB→ A,DE→ A,A→ E}〉
– R1〈{A,B,D}, {AD→ B}〉,R2〈{A,C,D,E}, {DE→ A,A→ E}〉
– R1〈{A,B,D}, {AD→ B}〉,R3〈{A,E}, {A→ E}〉,R4〈{A,C,D}, {}〉

The dependencies DE→ A, BC→ A are not preserved in the decomposition.
Decomposition based on A→ E:
– R〈{A,B,C,D,E}, {AD→ B,CB→ A,DE→ A,A→ E}〉
– R1〈{A,E}, {A→ E}〉,R2〈{A,B,C,D}, {AD→ B,CB→ A}〉
– R1〈{A,E}, {A→ E}〉,R3〈{A,B,C}, {CB→ A}〉,R4〈{B,C,D}, {}〉

The dependencies DE→ A, AD→ B are not preserved in the decomposition.
(d) Indicate all the 3NF violations.

The schema is in 3NF because all the determined attributes in F are primes.

3.4. Relational Database Design: Normalization Theory 18

Chapter 5

SQL: A RELATIONAL DATABASE
LANGUAGE

5.10 Exercises

Give a relational schema in SQL for your solution to Exercise 3.2(3), and write the following
queries:

1. Retrieve the name and birth year of the employee’s child with code 350.
2. For each employee, retrieve the employee name and the name of the department where he

works.
3. Retrieve the names and birth years of female employees older than their supervisor.
4. Retrieve the names of employees who do not have supervisors.
5. Retrieve the names of employees who work for the Research department, and the location

of the department.
6. For every project located in Pisa, list the project number and name, the controlling depart-

ment name, and the department manager’s name.
7. Retrieve the names of employees who have no dependents.
8. Retrieve the names of supervisors who have at least one dependent.
9. For each employee retrieve the employees name and the name of the immediate supervisor.

10. Retrieve the names of employees who have a dependent with the same sex.
11. For each employee retrieve the employees name and the social security number, the name

of the project on which he works, and the name of the department that manages the project,
sorted by the names of the department and the employee.

12. For each project on which more than two employees work, retrieve the project number, the
project name, and the number of employees who work on the project.

13. For each project, retrieve the project number, the project name and the number of employ-
ees from department 10 who work on the project.

14. Retrieve the names of employees who have all dependants with their same sex.
15. Retrieve only the names of employees who have all dependants with the same sex.
16. Retrieve the names of employees who only work on projects for 20 percent-time.
17. Find the name of the employees who work at least on all the projects in which the employee

with code 100 participates.

20

Solution
A relational schema in the JRS SQL.

CREATE DATABASE Company IN CompanyBD;

CREATE TABLE Departments (
Number INTEGER NOT NULL,
Name VARCHAR (16) NOT NULL,
Location VARCHAR (16) NOT NULL,

PRIMARY KEY (Number),
UNIQUE (Name, Location));

CREATE TABLE Employees (
SSN INTEGER NOT NULL,
Name VARCHAR (20) NOT NULL,
Sex VARCHAR(1) NOT NULL,
BirthYear INTEGER NOT NULL,
Salary INTEGER NOT NULL,
AssignedTo INTEGER NOT NULL,

PRIMARY KEY (SSN),
FOREIGN KEY (AssignedTo)
REFERENCES Departments ON DELETE CASCADE);

CREATE TABLE Dependents (
HouseHolder INTEGER NOT NULL,
Name VARCHAR(16) NOT NULL,
Sex VARCHAR(1) NOT NULL,
BirthYear INTEGER NOT NULL,
Relationship VARCHAR(8) NOT NULL,

PRIMARY KEY (HouseHolder, Name),
FOREIGN KEY (HouseHolder)
REFERENCES Employees ON DELETE CASCADE);

CREATE TABLE Supervisors (
SSN INTEGER NOT NULL,
StartYear INTEGER NOT NULL,

PRIMARY KEY (SSN),
FOREIGN KEY (SSN)
REFERENCES Employees ON DELETE CASCADE);

21

CREATE TABLE Subordinates (
SSN INTEGER NOT NULL,
SupervisedBy INTEGER,

PRIMARY KEY (SSN),
FOREIGN KEY (SSN)
REFERENCES Employees ON DELETE CASCADE,
FOREIGN KEY (SupervisedBy)
REFERENCES Supervisors ON DELETE SET NULL);

CREATE TABLE Managers (
SSN INTEGER NOT NULL,
Directs INTEGER NOT NULL,
StartYear INTEGER NOT NULL,

PRIMARY KEY (SSN),
FOREIGN KEY (SSN)
REFERENCES Employees ON DELETE CASCADE,
FOREIGN KEY (Directs)
REFERENCES Departments ON DELETE CASCADE);

CREATE TABLE Projects (
PNumber INTEGER NOT NULL,
PName VARCHAR (10) NOT NULL,
ManagedBy INTEGER NOT NULL,

PRIMARY KEY (PNumber),
FOREIGN KEY (ManagedBy)
REFERENCES Departments ON DELETE CASCADE);

CREATE TABLE WorksOn (
PercentTime INTEGER NOT NULL,
Project INTEGER NOT NULL,
Employee INTEGER NOT NULL,

PRIMARY KEY (Employee, Project) ,
FOREIGN KEY (Employee)
REFERENCES Employees ON DELETE CASCADE,
FOREIGN KEY (Project)
REFERENCES Projects ON DELETE CASCADE);

22

All queries assume the existence of the following views:

CREATE VIEW DataSupervisors (
SSN, Name, Sex, BirthYear, Salary, AssignedTo, StartYear) AS

SELECT e.SSN, e.Name, e.Sex, e.BirthYear,
e.Salary, e.AssignedTo, s.StartYear

FROM Employees e, Supervisors s
WHERE e.SSN = s.SSN;

CREATE VIEW DataManagers (
SSN, Name, Sex, BirthYear, Salary, AssignedTo, Directs, StartYear) AS

SELECT e.SSN, e.Name, e.Sex, e.BirthYear,
e.Salary, e.AssignedTo, m.Directs, m.StartYear

FROM Employees e, Managers m
WHERE e.SSN = m.SSN;

CREATE VIEW DataSubordinates (
(SSN, Name, Sex, BirthYear, Salary, AssignedTo, SupervisedBy) AS

SELECT e.SSN, e.Name, e.Sex, e.BirthYear,
e.Salary, e.AssignedTo, s.SupervisedBy

FROM Employees e, Subordinates s
WHERE e.SSN = s.SSN;

SQL queries

1. Retrieve the name and birth year of the employee’s child with code 350.

SELECT Name, BirthYear
FROM Dependents
WHERE HouseHolder = 350 AND Relationship = ’child’;

2. For each employee, retrieve the employee name and the name of the department where
he works.

SELECT Name, D.Name
FROM Employees E, Departments D
WHERE E.AssignedTo = D.Number;

23

3. Retrieve the names and birth years of female employees older than their supervisor.

SELECT U.Name, U.BirthYear
FROM DataSubordinates U
WHERE U.Sex = ’f’

AND U.BirthYear > (
SELECT SE.BirthYear
FROM DataSupervisors SE
WHERE U.SupervisedBy = SE.SSN);

4. Retrieve the names of employees who do not have supervisors.

SELECT Name
FROM DataSubordinates U
WHERE U.SupervisedBy IS NULL

UNION
SELECT Name
FROM DataManagers

UNION
SELECT Name
FROM DataSupervisors;

5. Retrieve the names of employees who work for the Research department, and the
department location.

SELECT E.Name, D.Location
FROM Employees E, Departments D
WHERE E.AssignedTo = D.Number AND D.Name = ’Research’;

6. For every project located in ‘Pisa’, list the project number and name, the controlling
department name, and the department manager’s name.

SELECT P.PNumber, P.PName, D.Name, M.Name
FROM Projects P, DataManagers M, Departments D
WHERE P.PNumber = D.Number AND M.Manages = D.Number

AND D.Location = ’Pisa’;

24

7. Retrieve the names of employees who have no dependents.

SELECT E.Name
FROM Employees E
WHERE NOT EXISTS(

SELECT *
FROM Dependents D
WHERE D.HouseHolder = E.SSN);

or:

SELECT Name
FROM Employees

EXCEPT
SELECT Name
FROM Employee, Dependents
WHERE SSN = HouseHolder ;

8. Retrieve the names of supervisors who have at least one dependent.

SELECT E.Name
FROM Employees E, Supervisors S
WHERE E.SSN = S.SSN

AND EXISTS (
SELECT *
FROM Dependents D
WHERE E.SSN = D.SSN);

9. For each employee retrieve the employees name and the name of the immediate su-
pervisor.

SELECT E.Name, SE.Name
FROM Employees E, Supervisors S, Employees SE, Subordinates U
WHERE E.SSN = U.SSN AND S.SSN = SE.SSN AND U.SupervisedBy = S.SSN;

10. Retrieve the names of employees who have a dependent with the same sex.

SELECT E.Name
FROM Employees E, Dependents D
WHERE E.SSN = D.SSN AND E.Sex = D.Sex;

25

11. For each employee retrieve the employees name and the social security number, the
name of the project on which he works, and the name of the department that manages
the project, sorted by the names of the department and the employee.

SELECT E.SSN, E.Name, P.PName, D.Name
FROM Employees E, WorksOn W, Departments D, Projects P
WHERE E.SSN = W.Employee AND P.PNumber = W.Project

AND P.DNumber=D.DNumber
ORDER BY D.Name, E.Name;

12. For each project on which more than two employees work, retrieve the project number,
the project name, and the number of employees who work on the project.

SELECT P.PNumber, P.PName, COUNT(*)
FROM Projects P, WorksOn W, Employees E
WHERE P.PNumber = W.Project AND W.Employee = E.SSN
GROUP BY P.PNumber, P.PName
HAVING COUNT(*) > 2;

13. For each project, retrieve the project number, the project name and the number of
employees from department 10 who work on the project.

SELECT P.PNumber, P.PName, COUNT(*)
FROM Projects P, WorksOn W, Employees E
WHERE P.PNumber = W.Project AND W.Employee = E.SSN AND P.PNumber = 10
GROUP BY P.PNumber, P.PName ;

14. Retrieve the names of employees who have all dependants with their same sex.

Let us write the query using universal quantification:

SELECT E.Name
FROM Employee E
WHERE (FOR ALL D IN Dependants WHERE D.HouseHolder = E.SSN:

D.Sex = E.Sex)
AND (FOR SOME D IN Dependants WHERE D.HouseHolder = E.SSN:

TRUE);

Let us rewrite the query using existential quantification:

SELECT E.Name
FROM Employee E
WHERE (NOT FOR SOME D IN Dependants WHERE D.HouseHolder = E.SSN:

NOT (D.Sex = E.Sex))
AND (FOR SOME D IN Dependants WHERE D.HouseHolder = E.SSN:

TRUE);

Hence the SQL query is:

26

SELECT E.Name
FROM Employee E
WHERE (NOT EXISTS (SELECT *

FROM Dependants D
WHERE D.HouseHolder = E.SSN

AND NOT (D.Sex = E.Sex))
AND EXISTS (SELECT *

FROM Dependants D
WHERE D.HouseHolder = E.SSN);

The query can also be written appropriately using the join and aggregation functions:

SELECT E.Name
FROM Employee E, Dependants D
WHERE D.HouseHolder = E.SSN
AND EXISTS (SELECT *

FROM Dependants F
WHERE F.HouseHolder = E.SSN

AND D.Sex = E.Sex)
GROUP BY E.SSN, E.Name
HAVING COUNT(DISTINCT D.Sex) = 1;

15. Retrieve only the names of employees who have all dependants with the same sex.
Let us write the query using universal quantification:

SELECT E.Name
FROM Employees E
WHERE ((FOR ALL D IN Dependants WHERE D.HouseHolder = E.SSN:

D.Sex = ’m’) OR
(FOR ALL D IN Dependants WHERE D.HouseHolder = E.SSN:

D.Sex = ’f’)) AND
(FOR SOME D IN Dependants WHERE D.HouseHolder = E.SSN:

TRUE);

Let us rewrite the query using existential quantification:

SELECT E.Name
FROM Employees E
WHERE ((NOT FOR SOME D IN Dependants WHERE D.HouseHolder = E.SSN:

NOT (D.Sex = ’m’)) OR
(NOT FOR SOME D IN Dependants WHERE D.HouseHolder = E.SSN:

NOT (D.Sex = ’f’))) AND
(FOR SOME D IN Dependants WHERE D.HouseHolder = E.SSN:

TRUE);

Hence the SQL query is:

27

SELECT E.Name
FROM Employees E
WHERE (NOT EXISTS (SELECT *

FROM Dependants D
WHERE D.HouseHolder = E.SSN AND NOT (D.Sex = ’m’))

OR NOT EXISTS (SELECT *
FROM Dependants D
WHERE D.HouseHolder = E.SSN AND NOT (D.Sex = ’f’)))

AND EXISTS (SELECT *
FROM Dependants D
WHERE D.HouseHolder = E.SSN);

The query can also be written without subselects, appropriately using the join and
aggregation functions:

SELECT E.Name
FROM Employees E, Dependants D
WHERE D.HouseHolder = E.SSN
GROUP BY E.SSN, E.Name
HAVING COUNT(DISTINCT D.Sex) = 1;

16. Retrieve the names of employees who only work on project for 20 percent time.

SELECT E.Name
FROM Employees E
WHERE NOT EXISTS (

SELECT *
FROM WorksOn W
WHERE W.Employee = E.SSN AND W.PercentTime <> 20)

AND EXISTS (
SELECT *
FROM WorksOn W
WHERE W.Employee = E.SSN);

17. Retrieve the name of each employee who works at least on all the project to which
employee 100 participates.
Let us write the query using universal quantification:

SELECT E.Name
FROM Employees E
WHERE FOR ALL W IN WorksOn WHERE W.Employee = 100:

(FOR SOME V IN WorksOn WHERE V.Employee = E.SSN:
W.Project = V.Project);

Let us rewrite the query using existential quantification:

SELECT E.Name
FROM Employees E
WHERE NOT FOR SOME W IN WorksOn WHERE W.Employee = 100:

(NOT FOR SOME V IN WorksOn WHERE V.Employee = E.SSN:
W.Project = V.Project);

28

Hence the SQL query is:

SELECT E.Name
FROM Employees E
WHERE NOT EXISTS

(SELECT *
FROM WorksOn W
WHERE W.Employee = 100

AND NOT EXISTS
(SELECT *
FROM WorksOn V
WHERE V.Employee = E.SSN

AND W.Project = V.Project));

Chapter 6

DBMS ARCHITECTURE

6.8 Exercises

1. Say which of the following statements is true or false and justify the answer:

1) The following physical plans for the query SELECT A FROM R ORDER BY A are not
equivalent:

Sort
({A})

Project
({A})

TableScan
(R)

Project
({A})

SortScan
(R, {A})

2) Logical operator and physical operator are synonyms.

3) Each SQL query has multiple logical trees.

4) Each logical tree has multiple physical trees.

5) Managing concurrency with data blocking does not create deadlocks.

6) With the undo-redo method, no data modified by a transaction can be carried over to the
BD before the corresponding log record is written in the permanent memory.

7) With the redo method, all changes to a T must be reflected in the BD before the commit
record is written in the log.

Solution

1) False. The first plan executes the query with an algorithm which first retrieves the
R records, then projects them on A and finally sorts them. The second plan uses an
algorithm that first orders R then retrieves the sorted records and finally projects
them on A, producing the same result.

30

2) False. A logical operator is an operator of relational algebra, while a physical opera-
tor is an algorithm for implementing a logical operator using the storage structures
available in the storage engine.

3) True. The initial logical tree can be transformed in different ways by applying the
equivalence rules of relational algebra. .

4) True. A logical operator can be implemented with different algorithms.
5) False. The data blocking technique can create deadlocks.
6) True. The undo-redo method follows the rules for undo and redo: before modifying

the BD, the old version and the new version of the modified data are written in the
log.

7) False. The redo method does not require transaction changes to be reflected in the
BD before the commit record is written in the log.

2. Give a logical and physical query plans for the following queries based on the database
schema (the attributes of the primary key are underlined and those of the foreign key are
marked with an asterisk).
For a physical query plan consider two cases: without using indexes and using indexes
that you believe are useful to speed-up the query.

Departments(Number, Name, Location)
Employees(SSN, Name, BirthYear, Sex, AssighedToDpt*)
Managers(SSN, StartYear, DirectsDpt*)
Projects(PNumber, PName, ManagedByDpt*)
WorksOn(Project*, Employee*, TimeShare)

1) SELECT DISTINCT E.SSN, E.Name, P.TimeShare
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare > 50
ORDER BY E.SSN;

2) SELECT E.SSN, E.Name, COUNT(*)
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare > 50
GROUP BY E.SSN, E.Name;

3) SELECT E.Name, M.StartTime, D.Name, D.Location
FROM Managers M, Employees E, Departments D
WHERE M.SSN = E.SSN AND M.DirectsDpt = D.Number AND D.Location = ’Pisa’
ORDER BY E.Name;

4) SELECT E.SSN, E.Name, COUNT(*), SUM(W.TimeShare)
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare = 100
GROUP BY E.SSN, E.Name
HAVING COUNT(*) > 2 ORDER BY E.Name;

31

Solution
Let us assume that there is only an index IdxEPk on the Emplyees primary key SSN
and to execute the join with the IndexNestedLoop:

1) SELECT DISTINCT E.SSN, E.Name, P.TimeShare
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare > 50
ORDER BY E.SSN;

δ

πbE.SSN, E.Name, P.TimeShare

./
E.SSN = W.Employee

Employees E σW.TimeShare> 50

WorksOn W

Logical query plan

Distinct

Sort
({E.SSN,E.Name,P.TimeShare})

Project
({E.SSN,E.Name,P.TimeShare})

NestedLoop
(E.SSN=W.Employee)

Filter
(W.TimeShare> 50)

TableScan
(WorksOn W)

TableScan
(Employees E)

Physical query plan without indexes

Distinct

Sort
({E.SSN,E.Name,P.TimeShare})

Project
({E.SSN,E.Name,P.TimeShare})

IndexNestedLoop
(E.SSN=W.Employee)

Filter
(W.TimeShare> 50)

TableScan
(WorksOn W)

IndexFilter
(Employees, IdxEPk, SSN=W.Employee)

Physical query plan with indexes

32

2) SELECT E.SSN, E.Name, COUNT(*)
FROM Employees E, WorksOn W
WHERE E.SSN= W.Employee AND W.TimeShare > 50
GROUP BY E.SSN, E.Name;

E.SSN, E.NameγCOUNT(*)

./
E.SSN = W.Employee

σW.TimeShare> 50

WorksOn W

Employees E

Logical query plan

GroupBy
({E.SSN,E.Name},{COUNT(∗)})

Sort
({E.SSN,E.Name})

NestedLoop
(E.SSN=W.Employee)

Filter
(W.TimeShare> 50)

TableScan
(WorksOn W)

TableScan
(Employees E)

Physical query plan without indexes

GroupBy
({E.SSN,E.Name},{COUNT(∗)})

Sort
({E.SSN,E.Name})

IndexNestedLoop
(E.SSN=W.Employee)

Filter
(W.TimeShare> 50)

TableScan
(WorksOn W)

IndexFilter
(Employees, IdxEPk, SSN=W.Employee)

Physical query plan with indexes

33

3) SELECT E.Name, M.StartTime, D.Name, D.Location
FROM Managers M, Employees E, Departments D
WHERE M.SSN = E.SSN AND M.DirectsDpt = D.Number AND D.Location = ’Pisa’
ORDER BY E.Name;

τE.Name

πbE.Name, M.StartTime, D.Name, D.Location

./
M.SSN = E.SSN

./
M.DirectsDpt = D.Number

σD.Location= ′Pisa ′

Departments D

Managers M

Employees E

Logical query plan

Sort
({E.Name})

Project
({E.Name,M.StartTime,D.Name,D.Location})

NestedLoop
(M.SSN=E.SSN)

NestedLoop
(M.DirectsDpt=D.Number)

Filter
(D.Location= ′Pisa ′)

TableScan
(Departments D)

TableScan
(ManagersM)

TableScan
(Employees E)

Physical query plan without indexes

Sort
({E.Name})

Project
({E.Name,M.StartTime,D.Name,D.Location})

IndexNestedLoop
(M.SSN=E.SSN)

NestedLoop
(M.DirectsDpt=D.Number)

Filter
(D.Location= ′Pisa ′)

TableScan
(Departments D)

TableScan
(ManagersM)

IndexFilter
(Employees, IdxEPk, SSN=W.Employee)

Physical query plan with indexes

34

4) SELECT E.SSN, E.Name, COUNT(*), SUM(W.TimeShare)
FROM Employees E, WorksOn W
WHERE E.SSN = W.Employee AND W.TimeShare = 100
GROUP BY E.SSN, E.Name
HAVING COUNT(*) > 2
ORDER BY E.Name;

τE.Name

σCOUNT(∗)> 2

E.SSN, E.NameγCOUNT(*), SUM(W.TimeShare)

./
E.SSN = W.Employee

σW.TimeShare= 100

WorksOn W

Employees E

Logical query plan

Sort
({E.Name})

Filter
(COUNT(∗)> 2)

GroupBy
({E.SSN,E.Name},{COUNT(∗),SUM(W.TimeShare)})

Sort
({E.SSN,E.Name})

NestedLoop
(E.SSN=W.Employee)

Filter
(W.TimeShare= 100)

TableScan
(WorksOn W)

TableScan
(Employees E)

Physical query plan without indexes

Sort
({E.Name})

Filter
(COUNT(∗)> 2)

GroupBy
({E.SSN,E.Name},{COUNT(∗),SUM(W.TimeShare)})

Sort
({E.SSN,E.Name})

IndexNestedLoop
(E.SSN=W.Employee)

Filter
(W.TimeShare= 100)

TableScan
(WorksOn W)

IndexFilter
(Employees, IdxEPk, SSN=W.Employee)

Physical query plan with indexes

	Information modeling
	ODM: An Object Data Model

	The Relational Data Model
	Relational Algebra
	Relational Database Design: ODM-to-Relational Mapping
	Relational Database Design: Normalization Theory

	SQL: A Relational database language
	DBMS Architecture

